The Journal
 OF

The Royal Astronomical Society of Canada

devoted to the advancement of astronomy and allied sciences
EDITOR
C. A. CHANT
Univarrily of Toronto, Toronto
\section*{ASSOCIATE EDITORS}
R. F. STUPART Director of the Meteorological
Service of Casada, Toronto
J. S. PLASKETT
Dominion Obscrvalory
Ouawa

PUBLISHED BI-MONTHLY

SEPTEMBER-OCTOBER, 1914

PRINTED FOR THE SOCIRTY TORONTO: 198 COLLEGE ST. POREIGN AGENTS: WILLIAM WESLEY \& SON, 38 ESSEX ST., STRAND, LONDON.

THE JOURNAL

OF THE

ROYAL ASTRONOMICAL SOCIETY

OF CANADA

Vol. VIII
SEPTEMBEE OCTOBER, 1914.
No. 5

The New Photurgaphe Telescope of the Dominion Ohservatory

$$
\text { R. AI. Motherwell } 305
$$

The Sular Rotation in 1913 HI. HI. Plaskett 307
Firors in Loongitude, Aaimuth and Latitude Determinations. - II.
F. A. McDiarmid 318
l'erseids and Leonids I'. F. Denning 341
Spectrum of Lightning - . . . A. Steadzoothy 345
The Meteor-Fall of Ensisheim (4492) - . C. A. Chan: 349
Notes from the Meteorological Service

| Report of the Weather in Canada, August-September | R. F.S. | 358 |
| :--- | :--- | :--- | :--- |
| Magnetic Observations | R. F.S. | 361 |
| Earthquake Records at Toronto and Victoria, B.C. | J. V. | 362 |

Astronomical Notes

Studies on Star Motions 364
The Late Sir David Gill - . . . 365
Harvard College Observatory . . . 3^{666}
Radiation from Stars - - . . 367
The Nearness of the Stars - . . 368
Annual Report of British Astronomical Association 369
I.ord Rosse's Telescope 369

Australian Meeting of the British Association - J. R. C. 370

Notes and Queries

Observations in leermuda - . . 371
Another Addition to lupiter's Family . . 373
Delavan's Comet C. A. C. 374
Editorial communications should be addressed to C. A. Chant, University of Toronto, Toronto, Ont.

Business correspondence, remittances, etc., should be addressed to Chas. P. Sparling, Treasurer of the Society, 198 College Street, Toronto.

Communications regarding Library matters should be addressed to the Librarian.
\$2.00 per annum. Single numbers, 35 cents.
Subscription to the Journal is included in membership fee.
Anyone wishing to purchase a telescope may correspond with the Secretary, Toronto.

THE ROYAL ASTRONOMICAL SOCIETY OF CANADA

 OFFICERS FOR 1914Ilonorisy Fresident－W．F．Kivi；C．M．（i．，I．I．I）．，Chief Astronomer，Ontawa． Pressident－I．S．I＇AskETT，IB A．．D．si．，Ottawa． först IVice President－A．D）．Wirsun，M．D）
Second I＇ïc－l＇resident－A．F．Mshar．
Scorclary J．R．Colsis．
F＇rezurer CHM．I＇．Slaktina，
 Curator－RobektS．Duscin．
Coumcil The above Otticers，and the following members：11．IS．Cublibk， Phm．13．，Turonto；Rev，I．I．Kıwsisin，M．A．，I）．Sc．．S．l．，diuelph：Rev．Dr．

 I．R．S．C．；Professor C．A．Cusant，W．Burfork Nrean，I＇rofensor A．T． Delorv，Professor Lous Ib．SIEwakr：and the prosiding wficer of cach Contre

 Westoby，Eso．，F．Narier Dexisox．

OTTAW I CFNTEE：

 IETERBOKOU゙：！C1：NTRE

 D．E．Eason，B．A．Sc：：Hexpy Comperti．

HAMIITOS（たNIKE．

 Evel．，1．M．Whiliams．

REGIN．I CENTRE
／1on．Presidim－1）r．R．A．Winsus，M．．．．

Scortary－Treasumer－Ituren I．P＇ve．

WINXIIEG CFNTRE

をUELI＇U CENTKE

F̈̈st Vice－l＇rsiten：－Profesuon IV．H．1）w，B．．．
Second Vicel＇residimt I）k．II．（i．KolikgIn．

Miss M．aky Mis．ls．
VICTORIA CEVTRE

／／onorarr Seirchary E．II．Cumplikili．，C．E．

CAMERA BUILDING, DOMIXION ASTRONOMICAB. OBSERVATORY゙, OTTAWI

Jozarnal of the Roral A crronombal loczety of Canaita, lylf

PHOTOGRAPHIC TEIESCOPE,
DOMINIOX ASTRONOMICAI. OBSERVITORV, OTYAWA
Mounted June.July, IgIt
Joumal of the R'oyal Astronomical Socicty of Canzia, 19rt

THE JOURNAL

OF THE

ROYAL ASTRONOMICAL SOCIETY
 OF CANADA

Vol. VIII.
SEITEMBER OCTOBER, I9!4.
No. 5

THE NEW PHOTOGRAPHIC TELESCOPI: OF THE DOMINION OBSERVATORY.

By R. M. Molltirwlit.
THE original equipuent of the Astrophysical Branch of the Dominion Observatory included an S-inch doublet attached to the 15 -inch equatorial. This arrangement was found unsatisfactory as the doublet could not be used without interfering with other work and the equatorial mounting was not suitable for carrying an exposure through the meridian. It was therefore decided to mount the doublet separately.

The contract was given to the John A. Brashear Co. and the instrument complete was delivered in July, 1912, but the building (see Plate VI.), was not completed until the present summer.

The instrument, as now monnted, consists of an 8 -inch doublet with focal length of forty-one inches, a 6 -inch doublet with focal length of thirty inches, a Zeiss-Tessar lens of 3.3 inches aperture and $11: 8$ inches focal length, a guiding telescope of 45 inches aperture and 525 inches focal length and two prisms of 15° and 25° which can be attached, individually or combined, to the 8 -inch.
(Plate VII.) shows the instrmment with the 15° prism attached. It also shows the design of the pier to permit of continuons exposure through the meridian at any declination. Provision is made for lowering or raising the pier-head by means of a worm in order that the instrament may be used $1 n$ any latitude. The end of the worm used for this purpose is visible just above the name-plate.

The building is octagonal, surmounted by a dome fourteen feet in diameter. The lower part of the building is divided into two parts, one containing the spiral stairway from which access is had to the dome through a sectional trap-door. and the other is used as a dark-room for loading plates.

> DOMINION OBSERVATORY, OTTAWA, CANADA

THE SOLAR ROTATION IN 1913

IN the study of the solar rotation by spectroscopic methods there are three main problems for research :-
(a) The accurate determination of the velocity at various latitudes, and the derivation of a formula connecting the variation of velocity with that of latitude,
(b) A study of the velocities given by different lines to determine whether the absolute rate of rotation varies with different elements, and
(c) A discussion of the errors involved.

It will be under three such heads as this that the " Solar Rotation in 1913° " will be treated.

The plates on which this discussion is based were taken in the $\lambda 5600$ region during the month of June, 1913 , by R. I\%, Delury and the writer. The apparatus for taking the plates has been described elsewhere.* Some thirty-one plates were made, on each of which there were nine rotation spectra, one at each of the latitudes, $0^{\circ}, 15^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}, 75^{\circ}, 80^{\circ}, 85^{\circ}$ and 90°.

In these spectra displacements were measured for the twelve lines in Table I. Two settings were made on the line in the centre strip, and one setting on each of the lines in the outside strip. The image of the plate was then inverted by means of a reversing eye-piece, and the settings made as before. After the displacements had been determined, they were multiplied by the

[^0]TAble I.-Lines in $\lambda 5600$ Region

No.	Wave- Length	Elemient	Intensity	Velocity Constant	No.	WaveL.ength	Element	Intensity	Velocity Constant
1	5547'157	Fe	2	19.18	7	5582.198	Ca	4	18.899
2	$5560 \cdot 434$	Fe	2	19.024	8	$5500 \cdot 3+3$	Ca	3	18.652
3	$5562 \cdot 933$	Fe	2	190	9	5600 '505	Ca	3	$18 \cdot 78$
4	5509.848	Fe	6	18.970	10	56247 (6)	FeV	3	18.653
,	$5576 \cdot 320$	Fe	4	14. 933	11	5638.488	Fe	3	18.575
6	5578.946	Ni	1	18.919	12	$565 \mathrm{~S} \cdot 097$	V	2	18.461

velocity constant in 'Table I., and the probable error for a single line was computed. All spettra showing a greater probable error than - $0 \cdot 0.0 \mathrm{~km}$. per second were re-measured, and the value of the displacement, showing the smaller probable error, was used in the final result. The final reduction was made by Method I.*

Siection 1.-Vaptris of Velocity

In 'rable II will be found a summary of the measured and corrected values of the velocity for twenty plates with eight latitudes on each. In addition to this, eleven other plates were measured in the equatorial region. Lack of space forbids giving a summary of their measures. Suffice it to say that the thirtyone plates at the equator gave the following mean values :-

> Mean measured velocity $\ldots .1 .808 \mathrm{~km}$. per sec.
> Mean corrected velocity $\ldots . .991 \mathrm{~km}$. per sec.
> Mean angular velocity $\ldots . .14^{\circ .14}$ per day.
> Probable error, single plate $\quad 10.017 \mathrm{~km}$. per sec.

Using all the lines on all the plates we find a
Mean probable error, single line. . . $0.03!$.
Also from a comparison of the velocities of all the plates at the same latitude, and all the latitudes we have

$$
\text { Mean probable error, single plate } 0.02 \%
$$

*. The Solar Rutation," I. S. Ilaskell and k. F. DeLury. Transaitoon, of the Rus.al suciety of Canatla, 1912, Section 3, 1. 7.

Faye's formula were used for the variation of velocity with latitude. They are of the form :-

$$
\begin{gathered}
(a+b \cos \phi) \cos \phi=I \\
a+b \cos ^{2} \phi=\xi .
\end{gathered}
$$

where ϕ is the latitude, l the linear and ξ the angular velocity, and $a, b, a^{\prime}, b^{\prime}$, are constants whose values have to be determined.

These constants were determined by the method of least squares, each value being properly weighted.

The following were the values determined for these constants :-

$$
\begin{gathered}
\left(1441+0 \cdot 53 \cos ^{2} \phi\right) \cos \phi=1 \\
10^{\circ} \cdot 23+3^{\circ} \cdot 81 \cos ^{2} \phi=\xi
\end{gathered}
$$

Table II.-Stmary of Meastries

Plate	Date	$\begin{gathered} \text { Mean Lat. } \\ =0^{\circ} 0^{\circ} \end{gathered}$		$\begin{aligned} & \text { Mean L.at. } \\ & =15^{\circ} 0^{\circ} \end{aligned}$		$\begin{aligned} & \text { Mean Lat. } \\ & -30^{\circ} \sigma^{\prime} \end{aligned}$		$\begin{gathered} \text { Mean Lat. } \\ =45 \% \end{gathered}$	
	G.M.T. 1013	Measured Vel.	Correcter Vel.	Measured Yel.	Corrected vel.	Measured vel.	$\begin{aligned} & \text { Cor- } \\ & \text { rected } \\ & \text { vel. } \end{aligned}$	Measureel vel.	Corrected Vel.
L. 979		1-802	1988	1.646	1.824	1.470	1\%41	1.113	$1 \cdot 230$
9×5	91748	$1 \cdot 763$	1994	1.653	1.826	14.35	1-591	1.119	$1 \cdot 241$
9×6	$917 \cdot 88$	$1 \cdot 774$	1'955	1605	1.837	1475	1. 636	F191	I'316
987	1016.72	$1 \cdot 794$	1'975	1.649	1.821	1.454	1.611	t^{1067}	1.18y
988	1017.03	1.807	1090	1.663	1.830	1.45 S	1.614	1087	$1 \cdot 204$
CSO_{9}	$1017 \% 0$	1819	$2 \cdot 001$	1597	: 7 -68	1417	1.572	1097	1.159
990	$10 \quad 17.97$	1.816	1'999	$1 \cdot 721$	1.896	: 4.36	1594	$1 * 81$:204
992	10:860	1.845	2.028	1.657	1.830	1.424	$1 \cdot 581$	1053	$1 \cdot 174$
994	1089.20	1.872	2.055	1722	1.806	1.432	${ }^{1} 5 \mathrm{SHy}$	$1 \cdot 128$	$1 \cdot 251$
94.6	10.1978	8.833	2.016	$1 \cdot 660$	$1.83{ }^{2}$	1.462	1.619	$1 \cdot 107$	1.229
$9^{298} 8$	In 20.38	1.794	1975	1.720	1.893	$1.4 \mathrm{~S}_{2}$	1.636	1.150	1.274
1000	102100	1-803	1985	1670	$1 \cdot 844$	1.474	1.633	1.129	$1 \cdot 251$
1003	1317.22	$1-806$	10902	1.668	1.844	1.489	1.679	1/14t	1.274
1005	$1318 \cdot 12$	17776	1901	1.642	1.817	143^{8}	: 596	$\mathrm{I}^{\circ} \mathrm{OS} 5$	1-209
1007	$1318 \cdot 65$	1770	1954	1.645	1.821	1.492	170.4	1 O6io	P_{1-184}^{4}
1011	1517.35	1×20	$2 \cdot 002$	1-656	1.829	1•392	1.546	1-090	1.214
1013	$15 \quad 18 \cdot 23$	$1 \cdot 778$	1058	1.146	1.819	$1 \cdot 451$	$1 \cdot 606$	$1 \cdot 068$	[191
1015	$15 \quad 18 \cdot 85$	1.818	1997	1.635	I-809	1.378	1.532	1/111	1:234
1017	1519.55	1.853	$2 \cdot 03.3$	1.649	1.819	1.422	$1 \cdot 576$	$1 \cdot 102$	$1 \cdot 225$
	1519.78	1.790	1.969	1.640	1.810	$1 \cdot 412$	1.566	1.084	$1 \cdot 206$
Means (Linear)		1-307	1.2889	$1 \cdot 660$	1.834	1445	1605	$1 \cdot 161$	$\cdot 224$
Veans (Angular)			$17^{\circ} \cdot 12$		$13^{6} \cdot 4^{36}$		$13^{*} \cdot 16$		$12^{*} \cdot 29$
Prob. Eirror, Single Plate		± 0.019		- 0020		- 0.028		-0	.025

Table II. - Summary of Measures.-(Continued)

Plate	Date	$\begin{aligned} & \text { Mean Lat. } \\ & =60^{\circ} \end{aligned}$		$\begin{aligned} & \text { Mean Lat. } \\ & =74^{\circ} 58^{\prime} \end{aligned}$		$\begin{aligned} & \text { Mean Lat. } \\ & =79^{\circ} 58^{\prime} \end{aligned}$		$\begin{aligned} & \text { Mean Lat. } \\ & =84^{\prime} 55^{\prime} \end{aligned}$	
	G. M.T. 1913	Measured Vel.	Corrected Vel.						
79	Juned h 6 19	0.682	0.770	0*318	0.370	0.163	$0 \cdot 2 \mathrm{c} 6$	0.104	
	917.48	$0 \cdot 769$	0.858	- 0334	$0 \cdot 386$	0. 141	0.180	-0.012	0.039
986	$9 \quad 17 \cdot 88$	0.787	0.878	0.394	$0 \cdot 447$	0.170	- 209	$0 \cdot 106$	0.135
9^{587}	1016.72	0.649	$0 \cdot 737$	$0 \cdot 288$	0.341	0.182	0.222	c. 118	0.147
988	101703	0.709	$0 \cdot 796$	$0 \cdot 328$	0.381	0.221	0.262	0.122	- 151
989	101770	0.801	0.888	0.375	0.429	0. 139	0'179	0.118	0.147
990	$10 \quad 1797$	0.680	0.766	$0 \cdot 351$	0.405	0.188	0.228	$0 \cdot 097$	0.126
992	$1018 \cdot 60$	0.671	0.757	$0 \cdot 291$	0.344	0.185	$0 \cdot 228$	0.135	0.164
994	$10 \quad 19 \cdot 20$	0.682	0,769	0.253	$0 \cdot 305$	0*159	$0 \cdot 198$	$0 \cdot 107$	0.136
996	$10 \quad 19.78$	0.592	0.677	0.322	$0 \cdot 375$	0.215	0.256	0.078	$0 \cdot 107$
998	$1020 \cdot 38$	0.692	$0 \cdot 779$	$0^{+} 307$	0.360	$0^{\prime} 158$	$0 \cdot 197$	0086	0.115
1000	$1021 \% 00$	0.676	0.752	0.287	$0 \cdot 340$	0.203	$0 \cdot 244$	0.123	0152
1003	831722	0.668	$0 \cdot 756$	0.296	0.348	0.221	0.26:	$0 \cdot 098$	$0 \cdot 128$
1005	1318.12	0.651	0.739	0.266	$0 \cdot 319$	$0 \cdot 176$	0.216	$0: 135$	$0 \cdot 165$
1007	1318.65	07719	0.807	$0 \cdot 314$	- $\cdot 366$	$0 \cdot 267$	$0 \cdot 309$	0.096	$0 \cdot 126$
1011	$15 \quad 17 \cdot 35$	0.720	0.810	$0 \cdot 336$	$0 \cdot 389$	$0 \cdot 271$	$0 \cdot 313$	$0 \cdot 107$	0.138
1013	$15 \quad 18 \cdot 23$	0.728	0.817	- $0 \cdot 297$	$0 \cdot 389$	- 2777	0.319	$0 \cdot 091$	0.121
1015	1518.85	0.729	0.817	0.295	$0 \cdot 348$	$0 \cdot 216$	0.257	$0 \cdot 097$	0.127
1017	1519.55	$0 \cdot 740$	0.828	$0 \cdot 334$	$0 \cdot 386$	$0 \cdot 245$	0.286	$0 \cdot 092$	0.122
10.8	151978	0.741	0.829	$0 \cdot 310$	0.363	- 255	- 296	0.133	0.164
Heans (Linear)		0*704	$0 \cdot 791$	0.315	0.368	0.203	$0 \cdot 243$	$0 \cdot 103$	0.132
Means (Angular)			$11^{\circ} 24$		$10^{\circ} \cdot 0_{4}^{*}$		$9^{\circ} 91$		$10^{\circ} \cdot 58$
P'rob. Error, Single l'late		± 0.035		$=0.023$		± 0.030		$=0.0: \mathrm{S}$	

DISCUSSION AND COMPARISON OF RESUITS

These results may now be well compared with those obtained in the $\lambda 5600$ region in the years 1911 and 1912 by J. S. Plaskett and R. E. DeLury using the same apparatus. Such a compar1son is given in Table III., where the third column gives the actual measured velocities at the equator, and the fourth colt.mn gives the mean probable error for a line using all plates at all latitudes.

The most important thing to note here is that the results obtained by J. S. Plaskett in 1911 and 1912 are considerably greater than those obtained by the writer. To see if the same were the case in 1913, J. S. Plaskett measured 20 equatorial

Table III.

Observer	Date	Measured Velocity	p. e. Line
I. S. Plaskett	1911	2.017	'024
J. S. Plaskett	1912	2.014	${ }^{\circ} \mathrm{O} \mathbf{4}^{\circ}$
K. E. DeLury	1911	$1 \cdot 950$	-060
k. E. DeLury	1912	2'006	-08o
II. H. Plaskett	1912*	8.993	-02i
H. H. Plaskell	1913	1 '991	-039

*This value obtaine 1 from the measures of five plates unly.
strips, and a comparison of measures will be found in Table IV. It will be seen that the values there given are practically identical. Consequently, the value of rotation as determined by J. S. Plaskett from the 1912 plates is $\cdot 024 \mathrm{~km}$. higher than the

Table IV:-Comparison of Meastres

Plate	J. S. Plaskett		H. H. Plaskett		$\mathrm{J}-\mathrm{H}$
	Velocity 0°	Line p.e.	Velocity 0°	Line p.e.	
L 979	1.842	± 0.042	1.802	$\pm 0^{\circ} 055$	
985	1.781	-057	1.763	'029	$+18$
986	1.774	'059	$1 \cdot 774$	049	0
987	1.817	021	1-794	046	$+\quad 21$
988	1.820	.037	$1 \cdot 807$. 035	+ 22
989	1.835	. 044	1.819	- 044	+ 16
990	1.851	. 027	1.816	. 023	$1+35$
992	1.837	044	1.845	067	- 8
994	1.826	. 036	1.872	.034	- 4^{66}
996	1.826	. 051	1.833	.053	
998	1.798	. 056	1794	.053	$+\quad 4$
1000	1.805	$\cdot 025$	1.803	O38	$+\quad 2$
1003	1.812	$\circ 35$	1.806	${ }^{0} 037$	16
1005	$1 \cdot 767$	-039	1.776	-. 036	- 9
1007	1745	03^{6}	1.770	. 023	25
1011	1.784	044	1.820	0.40	- 36
1013	1.760	$\circ 037$	$1 \cdot 778$	03^{6}	- 28
1015	1.783	. 039	1.818	-035	35
1017	1.834	- 38	1.853	$\text { © } 031$	$\begin{array}{r} 19 \\ -\quad 19 \end{array}$
1018	1.817	$\cdot 028$	1.790	.033	$+\quad 27$
Means	1.806	$=0.040$	$1 \cdot 807$	± 0.040	.001
Prob. Error, Single l'late	± 0.021		± 0.019		

value of the rotation determined from the 1918 plates. This difference may be accounted for in three ways:-
(a) Variation in the velocity of rotation from year to vear,
(b) Change in J. S. Plaskett's "habit " of measurement, and
(c) Poor quality of, or systematic errors* in, the plates.

The first two possibilities will be discussed later, but a word might be said here in regard to the character of the plates.

Since the quality of the lines in the $\lambda 5600$ region is poor, it is evident that every precaution must be taken in exposure and development in order to ensure spectra of good quality for measurement. It is quite evident from even a cursory examination of the plates that the exposures were none too well timed. In fact, this is almost impossible, when conditions are changing from day to day, and even from hour to hour.

With regard to development, it might be advisable to try methods other than those employed. Possibly the time, or tank method might, as in other photograpdic work, give uniform and satisfactory results.

It will now be of interest to compare these results with those obtained at other institutions engaged in the same line of research. Such a comparison will be found in Table V. In the two Faye formule, by changing $\cos ^{2} \phi$ to $\left(1-\sin ^{2} \phi\right)$ we obtain the formalae in the form :-

$$
\begin{gathered}
\left(a-b \sin ^{2} \phi\right) \cos \phi=I^{\prime} \\
a^{\prime}-b^{\prime} \sin ^{2} \phi=\xi
\end{gathered}
$$

where and a^{\prime} now give the linear and angular velocities at the equator. This puts the formule in a form more suited for comparison, and these are the values of $a, b, a^{\prime}, b^{\prime}$ that are given in Table V. The diversity of the results here is very remarkable

Now it is of course just possible that these discrepant results mean that the sun's velocity is variable. The writer has

* A discussion of this point will be found in either of the two papers already referre-1 to.

Table V.-Formula for Solar Rotation

Observer	Date	V, Linear	Velocities	ξ Angular	Velocities
		a	b	a^{\prime}	b^{\prime}
Dunér	1901	209		$14^{\circ .81}$	$4^{0.21}$
Halm	19016	2.05		$14^{\circ} 53$	$2^{\circ} \cdot 5^{\circ}$
Adams	1906-7	2.055	$0.4 \% 0$		
Adams	1908	$2 \cdot 053$	0.546	$14^{2.61}$	$4^{\circ} \cdot 04$
ddams	Mean	2051	0.501	$14^{\circ} \cdot 54$	$3{ }^{\circ} 50$
Storey \& Wilson	1910	2.08		$14^{0.75}$	$3^{0 \cdot 2}$
1. S. Plaskell	1911	2 O 12	$0 \cdot 523$	$14^{\circ} \cdot 28$	3^{60-1}
1. S. Plaskett	1912	2012	- 533	$14^{\circ} \cdot 28$	3°. 80
I, S. Plaskett	Mean	2012	0.531	$14^{\circ} \cdot 28$	$3^{\circ} \cdot 77$
1) Lury	1911	1971	0.523	$14^{\circ} \cdot 04$	$4^{\circ} \cdot \mathrm{Co}$
Mubrecht	1911	1.86		$13^{\circ} 23$	$3^{\circ} \cdot 2$
Evershed \& Roysts	1912	$1 \cdot 94$		$13^{*} \cdot 77$	
schlesinger	$1911-12$	2.00		$14^{\circ} 17$	$3^{61} \cdot 4$
II. II. Plaskett	1913	$1 \cdot 978$	0.537	$14^{\circ} \mathrm{O} 4$	$3^{6.81}$

attempted to form a seven year period from the results given in Table V. with minima at the following years.

1899.5	1.98	Dunér
1906.3	2.010	Halm
1913.5	1.97 S	H. H. Plaskett

While the values of velocity obtained by Halm and Dunér in the period 1×99 to 1906 do not fit in very well, yet those ohtained by later observers in the period 1906 to 1913 form a fairly presentable curve. There is a maximum of 2.08 km . per second from Story and Wilson's observations in 1910, while Adams' results for 1906-8 are on the ascending branch of the curve, and those of J. S. Plaskett and Schlesinger are on the descending branch. Such a period is, however, decidedly uncertain as we shall have reason to see in Section 3.

In the discussion of these results, there remains only one other point for consideration. It will be noticed that the majority of plates in 191 : were taken on four days, i. e., the ninth, tenth, thirteenth and fifteenth. Using the actual measured values at the equator we have, grouping them according to days, the following:-

June | 9 | 1.949 | 2 plates |
| ---: | ---: | ---: |
| 10 | 2.004 | 14 plates |
| 13 | 1.979 | 6 plates |
| 15 | 1.985 | 8 plates |

This rather remarkable result is also borne out by J. S. Plaskett's measures in the equatorial region. Sonse form of daily variation might be suspected if these results were sustained in the lower latitudes. This, however, is not the case, for though for any latitude each day has its own peculiar velocities, yet these velocities do not preserve the same order of magnitude.

Section 2. - Sustematic Differences of Velocity for Different Elements.

With the exception of Adams, previous observers have been of the opinion that there is no systematic difference in velocity for different elements. J. S. Plaskett and R. E. DeL.ury in 1911 shewed conclusively that in the $\lambda 5600$ region there was no difference that could not be accounted for under the head of accidental error. In the as yet unpublished results of 1912 the same conclusion was reached. And in 1913 none of the lines measured showed any such effect. In Table VI will be found a list of the algebraic residuals for each latitude and for each line. The largest algebraic residual is for the last line $\lambda 5658097$, and as this is less than one-third the mean numerical residual, it may safely be concluded that this is accidental in character. Accordingly for the three years 1911-1913 the conclusion reached is, that there are no systematic differences of velocity for different elements in the $\lambda 5600$ region.

Section 3.--Personal Errors of Meastrement

In this section nothing will be said of instrumental errors as they have been very thoroughly treated elsewhere.* Something may, however, be added to the conclusions reached by J. S.
*See the two papers ly I. S. Illaskell and R. E. Delury abready referred to.

Plaskett and R. F. Del.ury with regard to personal errors of measurements.

The question of measurement is very largely a psychological one. Theoretically tlie correct way to set on a line is on the centre of intensity. That this method of procedure is rarely if ever followed is indicated by two facts. If it were followed, all measurers would obtain the same value of the displacement for the same plate. That this is not the case is shown elsewhere.* Further, on account of the poor character of the lines used in the solar rotation, if the centre of intensity were set on,

Table Vit-Residtal.s in $\lambda 5600$

Wave Lengths	E1	Inc.	Mean Algebraic Residuals at Latitukes								Mean Numl. Residual	Mean Algebs. Restdual
			0°	15°	30°	45°	60°	75°	80°	86°		
5544'357	Fe	2	-21	33	-7	$+10$	+ 9	$+1$	10	$+9$	48	- 5
5560434	Fe	2		15	5	5	8	+ 6	8	- 4	54	5
5562.933	Fe	2	+ 2	18	- 15	+ 5	O	+ 2	+ 9	$+9$	50	- 1
5569.848	Fe	6		$+26$	$+18$	-11	- 1	+19	10	-26	4.3	$+$
$5576 \cdot 320$	Fe	4	2	$+19$		$5+1$	- 13	25	- 4	$+3$	45	3
$5578 \cdot 941$	Ni .	1	+16	15	$+2$	2 In	+ 25	9	$+6$	19	53	+ i
$5582 \cdot 19 \mathrm{~S}$	Ca	4	- 1	+ IC	$+12$	2. 11	32	8	15	+8	39	+ 1
$5590 \cdot 343$	Ca	3	$+5$	+ 8	10	+	- 2	-21	$+1$	15	44	- 4
$5601 \cdot 505$	Ca	3	$+1$	\bigcirc	+ 1	1-24	-11	+ 6	-9	15	44	-6
$5624 \% 69$	lev	3		+ 7	$+15$		+19	+	+ 5	$+12$	44	$+8$
5638.488	Fe	3	6	+ 88	8	8		+ 5	$+8$	-11	41	\cdots
5658 (0)?	V	2	$+13$	- -	$+7$	+11	+11	+23	$+22$	$+27$	$4{ }^{6}$	+14
I'rob. Eirror, Single Line			4	37	41	41	41	38	43	36		

the magnitudes of the probable errors might be reasonably expected to be greater than they are. There are possibly two reasons why a different mode of setting is used, namely : mental fatigue and desire. Owing to the varying character of the lines, each setting on the centre of intensity would involve a fresh expenditure of mental energy, which would tend to become very tiring. Accordingly a mode of setting might be adopted which would involve the least expenditure of mental energy, and would allow the measurement to be performed in a purely mechanical

[^1] 16.
fashion. Mental desire may also, and probably dots, enter into the question. The part of the line set on may be dictated by some prenossession of the mind seeking a certain result. It is very prohably some combination of these "complexes" that gives an intividuality, and a character, to each person's measures. As suctir a character is due to the astion of the mind, the psycholog. ical law of association enters, and this character becomes a more or less permanent feature of the measures. It can be well understood that such an association would become much weakenol with the passage of time, and thus, if measurement were altogether discontinued for a sufficiently long interval, the character of one's measures would be lost. In commencing to measure again it seems highly probable that the character of the measures would be changed.

To determine the influence exerted by this character, or, in other words, to determine the personal equation of each measurer, is a question of no little importance. It seems to the writer that a determination could be made by some such method as the following. If six plates, say, of good quality were sent to each observer in turn with instructions to measure and compare with plates of his own, much valuable information could be obtained. From all the measures on the six plates a mean value could be obtained for each from which a correction might be determined for each observer.

Until something of this nature is done it is hopeless to expect definite knowledge with regard to the solar rotation. It is evident that a variation in velocity, such as was mentioned in Section 1, would entirely collapse if certain not unlikely corrections were applied to each observation. The need for such an investigation is thus plainly seen.

With regard to J. S. Plaskett's velocity obtained from the 1913 plates, as compared with that from the 1911 and 1912 plates, much might be said. The three possibilities mentioned in Section 1 as explaining this difference, all seem plansible in the light of further evidence presented in that section and this. If the fall in value be due to a variation in the smis velocity. that
excludes to a large extent the possibility of a change in J.S. Plaskett's habit of measurement. So, also, if we admit a change in his habit of measurement, then that exciudes very largely the possibility of a variation in velocity. The third possibility, that of an instrumental error, seems from every view point the most likely. The large differences due to instrumental error are discussed elsewhere.* They would more than cover the difference or fall in value between 1912 and 1913. The problem will be finally settled only when J. S. Plaskett has measured the plates in the $\lambda 4250$ region for 1913 , and has also remeasured some of his earlier plates.

Summary

The conclusions from this investigation may be briefly enumerated as follows :-
(a) The 1913 values of the solar rotation may be represented by the formula :

$$
\begin{gathered}
\left(1.441+0.537 \cos ^{2} \phi\right) \cos \phi=1 \\
10^{\circ} \cdot 23+3^{\circ} \cdot 81 \cos ^{2} \phi=\xi .
\end{gathered}
$$

(b) There is no evidence of systematic differences of velocity for different elements.
(c) It is at present impossible to settle the question of a variation in the solar rotation, or any similar problem, until the personal errors of measurement of each observer has been determined.

In conclusion it gives me great pleasure to acknowledge the obligation I am under to Dr, King for permission to publish these results.

* see the two papers lyy I. S. Plashett and R. F:. Delury already reforred 10.

Dominion Observatory, Ottawa, Canada, August 24th, 1914.

ERRORS IN L.ONGITUDE, AZIMUTH AND I.ATITUDE DETERMINATIONS - II.

IBy F. A. M: DIARMII

AZIMUTH

The azimuth of a point on the earth's surface is the angle contained between the plane of the meridian and the vertical plane which passes through this point and the eye of the observer.

Since the vertical plane is determined by the direction of the plamb line, and this line may deviate from the true norma to the earth's surface, a corresponding change in azimuth must exist. There is therefore astronomical and geodetic azimuth.

The astronomical azimuth of a point is the angle between two planes drawn through the plumb line at the point of observation, the first plane parallel to the earth's axis, and the second passing through the point.

The geodetic azimulh is the angle between two planes drawn through the normal to the earth's surface at the point of observation, the first plane passing through the earth's axis and the second through the point.

In this paper astronomical azimuth alone will be considered. Extreme accuracy in azimuth observations is necessary in connection with the geodetic operations of a primary triangulation and with the establishment of international or provincial boundaries. The principal methods employed in such work by the Canadian astronomers will be given, together with some of the results obtained therefrom.

THE INSTRUMENTS

The instruments employed (by the Dominion Observatory) in field azimuth determination are: a twelve-inch alt-azimuth
having a horizontal circle finely graduated and read with micrometer microscopes, and the astronomical transit used in time work. With the latter instrument the mark is placed nearly in the meridian of the observer, and the azimuth of the line connecting the observatory and the mark determined. That line can then be connected to any series of triangulation required. With the twelve-inch alt-azimuth the mark can be placed in any direction whatever from the observatory, and the angle between the mark and star can be read on the horizontal circle. With the transit instrument used for azimuth determinations the folar stars must be observed as they cross the meridian, while with the other instrument the stars can be observed at any hour angle whatever.

The stars generally used in azimuth determinations are a Ürse Minoris, λ Ürsae Minoris, δ Ürse Minoris, 51 Hev: Cephei, and Bradley 167°; but the writer has used stars of as low a declination as 82°. with a fair measure of success. All the observations on the stars of smaller declination were made with the transit in the meridian. When stars of declinations ranging from 82° to 89° are used, there is placed at the disposal of the observer a list of about fifteen or twenty stars crossing the meridian at times stritable for observing.

TIIE SIGNMI.
Precise azimuth observations are carried on at night, and an illmminated mark is required. A convenient mark is a wooden hox firmly monnted over the point whose direction from the observatory is required, the light from a lantern or carbicie lamp being thrown through a hole in the front. This mark must be placed far enough from the observatory so that no change in the focus of the telescope will be necessary between the observations on star and mark. About a mile will generally be sufficient. I'airly good observations have been obtained at a less distance, but it should always be attempted to get the mark at least one mile from the observatory. It is also well to have the azimuth line pass a considerable distance above the surface of the ground.
and so it is well to place the signal on a high elevation: the higher the line of sight above the ground, the steadier the light may be expected to show, and the smaller the errors from lateral refraction.

The diameter of the aperture through which the light is thrown should be adjusted with reference to its distance from the observatory, the power of the telescope, and the local atmospheric conditions. The aperture shouid be such as to subtend at the observer an angle between $1^{\prime \prime}$ and $0^{\prime \prime} 5$.

The distance to the mark being known, it is easy to compute the size of the hole required.

Distance of mark	Diameter of aperture		
Kin	St mles	Max.	Min
1.5	.9	mm	mm
2.0	1.2	7	4
2.5	1.6	10	5
3.0	1.9	12	6
4.0	2.5	15	8
6.0	3.7	19	10
10.0	6.2	29	14
		48	24

In the report of the United States Coast and Geodetic Survey for 1897.98 the above table is given. In our work here in Canada we found a much smaller aperture preferable. In some observations at Atlin, B. C., in 1911. an aperture of diameter one-eighth of an inch at a distance of one and a quarter miles was found very satisfactory. The light was from an ordinary coal oil lantern and it showed about the brightness of a fourth magnitude star. If a carbide lamp had been the source of illumination, the aperture could doubtless have been made smaller and the result would likely have been even more satisfactory.

METIOD OF OBSERVATIOX

With both the alt-azimuth instrtment and the transit telescope the method of observation is essentially the same. A com-
plete observation consists of ten readings on the mark; ten on the star, noting the time; reading the striding level; reversing the telescope and again reading the striding level; ten readings on the star; and ten readings on the mark. With the altazimuth instrument it is necessary to read the horizontal circle, both on star and mark. Both instruments are fitted with an eyepiece micrometer ; the one used on the transit instrument is that employed in time work, and the observations on the star are recorded on the chronograph. As the star readings in the two positions of the telescope are taken over the same part of the field, the mean of the chronograph readings will be the star's time of transit across the line of collimation. If we assunie a to be the mean of the readings on the mark with the telescope in one clamp, and b the mean of the mark readings in the opposite clamp, then $(a+b) / 2$ is the reading of the line of collimation, and the mark is $(a-b) / 2$ from the line of collimation.

As in time determinations, so i: azimuth observations one very fruitful source of error is from poor level determination. The value of the level correction is determined directly from readings of the striding level, and extreme care must be taken to remove all possible level errors as they enter directly into the azimuth results with sometimes more than their full values. If b is the inclination of the axis when west end of axis is high and if z is the zenith distance of the star, then the correction to the azimuth due to level is $b \cot z$. In high latitudes the value of z is generally small, and hence the correction for level is considerable.

An observation for azimuth may be taken on a polar star at any hour angle, and the reduction made by the following formula : -

$$
-\tan A=+\sin t
$$

where A is the azimuth to be determined, ϕ is the latitude of the place of observation, δ is the declination of the star, and t is the hour angle of the star.

If \boldsymbol{a} is the right ascension of the star, and T is the chronometer time of observation, at ΔT is the error of the chronometer, then $t=(T+\Delta T-a)$.
ΔT may be determined in several ways, the best of which is by observing time stars in the meridian, or time stars in the vertical of Polaris. If the azimuth observations are made in the meridian and the transit instrument is being used, then with comparatively little labor the clock error can be determined by transits of a few stars. When the alt-azimuth instrument is the instrument employed then the best determination of time is obtained from observations in the vertical of Polaris.

Let a and a be the right ascensions of Polaris and the time star respectively, and T and T^{\prime} be their times of transit across a certain vertical plane; δ, the declination of the south star; P, the polar distance of Polaris in stconds of are ; ϕ, the latitude of the observatory ; and t, the hour angle of the time star.

Also let $\Delta=\left(\mathbf{a}-\boldsymbol{a}^{\prime}\right)+\left(T-T^{\prime}\right)$;
Then $t=15(P \sin \Delta)\left(1 \times P \cos \Delta \tan\right.$ is $\left.\sin 1^{\prime \prime}\right)$ $(\tan \phi-\tan \delta)$.

The star's time of transit (over vertical of Polaris) $-a+t$; and the chronometer error $=a+t-T^{\prime}$.
By observing one star with circle right and a second with circle left, and taking the mean of the two results we get a clock correction free from collimation error. A time determination obtained in this way is easily correct within the limits required in azimuth work.

On the following pages are given the computations of some observations taken at Eidmundston, N. B., by this method.

TIME OBSERVATIONS
stidION. E゙dmundston
1)ATE, October 31, 1909

CIRCI.E WESI
CIRCLE EASI

TIME OBSERVATIONS
STATION, Edmundston
DATE, Octuber 31, 1909
EIRCLE WEST
CIRCLE EAST

$p=-886.23$
$-1055 \cdot 82$
$\log t=209475464$
$\log (\tan \phi-\tan$ is) $=9.9753399$
$\log t($ in arc $)=2.9228863 \mathrm{~N}$
$\log 15=1 \cdot 1760913$
log t (in time $)=1.7467950$ n
$\begin{aligned} & a=22321.95 \\ & f= \\ & 55.82\end{aligned}$

- $55 \cdot 82$
$7=22249$
Chronometer error $=-22^{\circ} \%$

At Mean 2 h 2 Sm
$3^{\circ} 0235^{\circ 99} n$
9.8394152
2.8630051
1.176091;
1.6869135
$48^{\prime \prime} \cdot 63$
2334172
$48.6 ;$
$23253^{\circ} 09$
$23315{ }^{\circ} 5$
$-22^{2} 4$
$-22^{*} \cdot 6$

RIEDUCTION OF AZIMUTH OBSERVATIONS

If A is the azimuth required ; t, the hour angle of the star at the instant of observation : ϕ, the latitude of the place of observation ; δ, the declination of the star ; then the azimuth is given by the formula :-

$$
\begin{aligned}
\tan (-A)= & \frac{\sin t}{\cos \phi \tan \delta-\sin \phi \cos t} \\
= & \frac{\sec \phi \cot \delta \sin t}{1-\cot \delta \tan \phi \cos t}
\end{aligned}
$$

$$
=\frac{\sec \phi \cot \delta \sin t}{1-a}
$$

where $a=\cot \delta \tan \phi \cos \ell$.
Now $\log (1-a)$ is tabulated for values of $\log a$ when $\log a$ is not greater than 900 and not less than 900 n . For stars of declination greater than $88^{\circ}, \log a$ is always between these limits.

The curvature correction is always small, but not negligible. It is given by the formula :-

$$
\text { Curvature correction }=\tan A_{n}^{1} \geq \frac{2 \sin ^{2} 1 / 2 T}{\sin 1 / 2}
$$

where $T_{3}, T_{2}, T_{4}, \ldots . T_{n}$ are differences between the times of the separate observations and the mean. If the star crosses the meridian during the progress of the observations, the curvature correction will be zero. This is the case with observations taken with the transit instrument in the meridian.

Because of the rapid motion of the observer, due to the rotation of the earth on its axis the star is seen slightly displaced from its real position. The correction for diurnal aberration is given by

$$
\begin{gathered}
0.32 \begin{array}{c}
\cos A \cos \phi \\
\sin \sigma
\end{array},
\end{gathered}
$$

where A is the azimuth of the star, ϕ is the latitude of the place of observation, and z is the zenith distance of the star.

Oa the following pages will be found azimuth observations taken at Edmundston, N.B., with the alt-azimuth instrument.

AZIMTTII COMPUTATION

ST.\K a Urso Minoris DATE October 31, 1go9

INSTRUMENT 12" Azimuth STATION Edmundsion

OBSERVER, F. A. McDiarmid

Explanation	Set I sheet	Set 2 Sheet	Set 3 Shes	Set 4 sheet	Set 5 Sheet
t in time t in are i in	$\left(5 \mathrm{~h} 49^{\mathrm{m}} 49^{\prime} 3\right)$ $-87027^{\prime} 19^{\prime \prime}{ }^{\prime}$ $83^{\circ} 49^{\prime} 31^{\prime \prime} \cdot 50$		$\left.\begin{array}{c}-(3 \mathrm{~h} 02 \mathrm{~m} \\ 27 \mathrm{~s} \cdot 6\end{array}\right)$	$\left(\begin{array}{l}(2 \mathrm{~h} 22 \mathrm{~m} \\ \left.-23^{\circ} 1\right) \\ -\left(35^{\prime} 35^{\prime}+6 \cdot 5\right) \\ \Delta s+93^{\prime} .55\end{array}\right.$	$\begin{gathered} -\left(1 \mathrm{~h} 3 \lim ^{21 s} 0\right) \\ (240515 \circ 0) \\ 884931^{\prime} 57 \end{gathered}$
\cot \#	S 3117307	8'3117271	8•3117270	8'3117261	$8 \cdot 3117241$
1.17 ¢	'0359470	.0350470	${ }^{\circ} \mathrm{O} 359470$	\% 0359470	'0359470
$\cos t$	8.6473513	97228116	$9^{\circ} 8447730$	9.9101648	$9 \cdot 9604343$
$\log a$	6.9950290	S'0704857	S'1924470	82578379	8'3081054
\cot i	S'3117307	S'3117271	8'3117270	S'3117261	$8 \cdot 31172+1$
sce ϕ	-1692315	-1692315	'10923'5	-1692315	'10923'5
s.n t	$9.9975715 n$	9.92 Sgotc	$9 \cdot \mathrm{~S} 40975$	$9764975 \mathrm{C}_{n}$	$9^{\prime 6107999}$
log 1	'0004306	.005 1388	'0068177	'0079358	'OOS9192
$\log (-\operatorname{tin} A)$	$\begin{array}{r} 8.4809643 n \\ +1^{\circ} 44^{\prime 01} 40 \end{array}$	$\begin{array}{r} 8.4150604 n \\ +\quad(1292279) \end{array}$	$\begin{gathered} 8.3418731 n \\ +(1153133) \end{gathered}$	$\begin{array}{r} \mathrm{S} 253 \mathrm{~S} 684 \\ +\quad(1014039) \end{array}$	$\begin{array}{r} 8.1006747 n \\ +\quad 04320.62 \end{array}$
	$15^{\text {m }}$ 05 $5^{\circ}+46.55$	$13357362 \cdot 80$	10597237 6507	$\begin{array}{rrr}11 & 18.2 & 250.82 \\ 70.2 & 99.52\end{array}$	$1323 \cdot 3351 \cdot 84$
T and	$9 \quad 0916437$	$831.7142,78$	6507 9200	7072995	36.3150 .34 5
T and	5 53 67.96	4377 42'06	2477815134	403.2 32.25	535361.31
$2 \sin 2 \frac{1}{2} T$	$5 \quad 22 \quad 56.55$	$532 \cdot 3 \quad 60 \cdot 22$	$23^{\prime} 0^{\prime} 312{ }^{12} 32$	$323 \cdot 8 \quad 22.65$	229712.20
$\sin 1^{2}$	$9) \quad 57 \quad 194.36$	$\times 50.3153^{\prime} 3^{6}$	$641 \cdot 3 \quad 87 \cdot 83$	742.8116 .80	1116.7249 .71
-	1448429.93	$1222 \prime 3300 \cdot 45$	$1026 \cdot 321390$	1121.8253 .48	$1408 \cdot 739273$
Mean	220.62	176.95	109.62	$129 \cdot 25$	20411
L.ogy of mean	2'3552982	$2 \cdot 2478506$	2.0398898	$2 \cdot 1114306$	2.3098643
logs of curvature	-8362625	'6629090	'3817629	'3652990	\% 4105390
Curvature cor.	- $6^{\prime \prime} \cdot 86$	-4.60	- 2 * 42	$2 \cdot 32$	2.59
A2. of star	$+1^{\circ}+3^{\prime} 54^{\prime \prime} 54$	+ (1 29 18 18	$+11525.91$	$+1013807$	+043 1S'c3
Reading on star	180401545	$03126 \cdot 16$	0:1731'25	18003 4,360	$3594526 \cdot 10$
Reading on noth	$179^{\circ} 02^{\circ} 21^{\prime \prime} 91$	359020797	$3590210 \cdot 34$	$1790205 \cdot 59$	$3590208 \cdot 07$
Keading on line	$24^{12} 2.80$	1824111:58	182411382	$24111: 34$	1524113.63
Az. of line	$1833903 \cdot 89$	18339 361	$1 \mathrm{S3} 390348$	183390575	183 $3905{ }^{\circ}$

AZIMUTH COMPUTATION - (Confinued)

STIK a Urse Minoris
1)ATE Octulier 31, 1909

OBSERVER, \mathfrak{F}. A. McDiarmid

Explanation	Set 6 Sheat	set 7 sheet	Set 8 sheet	Set 9 Sheet	Set 10 Sheet
t in time	($0^{\text {h }} 55^{\text {m }}$ 16s 5)	- (oh $15 \mathrm{~m}^{\mathrm{m}} 20,1$)	oh 25 mm 2087	1i1 20m 20s 5	$1 \mathrm{ht} 55^{\mathrm{mm}} 14^{\mathrm{s}} 5$
t in arc	-1347075	(3) $3^{\prime \prime} 0^{\prime} 1^{\prime \prime} 5$)	$6 \quad 21$ +0'5	2006375	$28 ; 8375$
i	$88+931 \cdot 58$	8s $4931 \cdot 59$	884921.60	884931.62	88 $4931 \cdot 63$
cot is	$8 \cdot 3117221$	S'3117211	8.3117201	83117181	8'3117171
tall ϕ	-0359470	-0359470	'03594;0	-0359470	'0359470
$\cos t$	$9 \cdot 9572443$	9'99502\%0	$9.99731 / 8$	$9 \cdot 9720803$	$9 \cdot 9426127$
$\log a$	S'3349134	S 3466951	$8 \cdot 3+49849$	S'320j454	8-2902768
\cot os	8.3117221	8.3117211	8.3117201	8'3117181	8.3117171
sec ϕ	$\cdot 2692315$	1692315	-1692315	1692315	1692315
$\sin t$	$9.3781275 n$	S'S2517;0	$9^{\circ} \mathrm{O}+45273$	9.5303443	9.6829686
$\log \frac{1}{1}$	'00) $495{ }^{1}$	-00775;0	-0097187	-00917:2	- $\cos 5575$
$\log (-\tan A)$	$\begin{array}{r} 7.8685762 n \\ +\quad(02524.03 \end{array}$	$\begin{array}{r} 73158866 n \\ +\quad 00703.0 \mathrm{~S} \end{array}$	$\begin{aligned} & 7 \times 53519,6 \\ & 011+7 \cdot 33 \end{aligned}$	$\begin{aligned} & 80264711 \\ & 03032 \cdot 20 \end{aligned}$	$\begin{aligned} & S \cdot 1724747 \\ & -\quad 05108 \cdot 09 \end{aligned}$
	$1541 \cdot 8483 \cdot 59$	1110224934	1003158.25	$9.30 \cdot 817768$	936.8181 .43
	919.8170	$751 \cdot 2121008$	73011044	$613.876 \cdot 25$	$605 \cdot 8 \quad 72.98$
τ aml	$436 \cdot 8 \quad 41 \cdot 78$	$228 \cdot 2$ 11.97	$40933 \cdot 5:$	302.8 18.23	$347 \cdot \mathrm{~S} \quad 2 \mathrm{~S} \cdot 30$
$2 \sin ^{2} \frac{1}{2} \tau$	$641 \cdot 2 \quad 8779$	$304 \cdot 8$ 18.57	2 8 8 8 1539	$23^{3} 5 \cdot 2 \quad 13 \cdot 64$	$247 \cdot 215 \cdot 23$
$\sin 1^{2}$	$948 \cdot 2188.68$	$803 \cdot 8127.64$ 10	$\begin{array}{rrr}8 & 18 & 135 \cdot 25 \\ 10 & 36 & 220.58\end{array}$	$\begin{array}{rrr}605.2 & 72.34 \\ 1004.2 & 199.07\end{array}$	$603 \cdot 2 \quad 7194$
	1307233961	$10.26 \cdot 8214.24$	$\begin{array}{ll}10 & 36 \quad 220 \cdot 5\end{array}$	$1004 \cdot 2199.07$	$1040 \cdot 22350$
Mean	21872	$123 \cdot 81$	$118 \cdot 96$	$92 \cdot 86$	98.90
Log of mean	2.3398885	20327557	2.0754010	1.9678287	199951963
Log of curvature	-2087647	9.4056423	9.6105986	99942998	-1676710
Curvature cor.	- 162	- "26	$+{ }^{+1}$	+ "'99	1"49
Az. of star	$+0^{\circ} 25^{\prime} 22^{\prime \prime} 41$	0070672	- 01140.92	- $03631 \cdot 21$	05106
Reading on stars	179273001	$3590715 \cdot 23$	$1785019 \cdot 0$	35 S 2534.91	1781058.64
Reading on north	17902076	359 02 $3^{\prime} 51$	$1790205 \cdot 52$	$3590206 \cdot 12$	$1790205 \cdot 24$
Reading on line	24110.96	152411205	2411105	152410931	2411205
Az. of line	$183^{\prime \prime} 39^{\prime} 03^{\prime \prime} \cdot 36$	1833903.54	183.3904 .53	183390319	$1833906 \cdot 81$

Edmundston, N.B., 31 October 1909.
Azimuth of line joining Astronomical Observatory at E. 1 mundston to monument 575 of the International Botndary Survey.

Number of Set	Azimuth of Line			v	v
1	183	3)	$03 \% 89$	$0 \ddot{4} 8$. 2304
2	-	*	0308	76	$\cdot 5776$
3	${ }^{6}$	-	03.48	-89	$\cdot 7921$
4	"	${ }^{*}$	05\%	-1.38	1.9044
5	*	*	05.56	-119	1.4161
6	"	*	$03 \cdot 36$	101	1'0201
7	*	${ }^{*}$	$03 \cdot 54$	-83	. 6889
8	${ }^{6}$	*	04.53	- 16	-0256
9	**	**	03.19	1.18	1. 3924
10	${ }^{6}$	*	06.81	- 244	5.9536
					14.0012

$$
\text { Probable error } \pm 6745 \sqrt{1+0012} \begin{gathered}
10 \times 9
\end{gathered}= \pm 26
$$

Mean azimuth $183^{\circ} 39^{\prime} 04^{\prime \prime} \cdot 37+26$.
Diurnal aberration 32
Azimuth of line $183^{\circ} 39^{\prime} 04^{\prime \prime} 69+26$.
Observations for azimuth were made in $190 \mathbf{7}^{-7}$ on the 141st meridian for the purpose of determining the boundary line between the district of Alaska and the Vukon territory, The observations were made with an astronomical transit by the 'eye and ear' method of observation. Mr. G. Clyde Baldwin represented the United States government, and the writer the Canadian government. The following are the results :-

Final Azimuth Results 141st Meridian at Vukon River Crossing, boundary between Alaska and Canada.
F. A. McDiarmid, Observer.

Date	Star	Azimuth	v	$v 2$
1 you		- "		
April 29	alirso Minoris	180000194	$-\quad 19$	${ }^{\circ} \mathrm{O}_{3} 5 t$
$\because 3^{0}$	α	$179 \quad 59 \quad 59.83$	1.92	$3 \cdot 656.4$
Nay	a 64 6	1800001.76	'OI	.0001
* 2	0 *	180 00 01.97	- 13	. 0169
April 30	6 Ursie Minoris	I80 00 01'94	-19	.0361
Mily 2	6 * *	180000191	-16	. 0256
April 30	+3 Melvetii Cephei	1800001.64	-11	.0121
Nay 2	43 Ilelvetii Ceplei	ISO 00 01.34	41	. 1081
April 30	Grummbridere 944	180 on 01.63	- 12	. 144
"30	i Urse Minuris	$1500002: 33$	-58	.3364
$\text { May } 2$		180000310	1.35	1.8225
2	Ciruomluriage 750	$180 \text { oo } 01 \cdot 66$	${ }^{+0} 9$.0081
				6.1628

$$
\begin{aligned}
& \text { Mean } 180^{\circ} 00^{\prime}\left(11^{\prime \prime} 76\right. \\
& \text { Probable error }=6745 \sqrt{\frac{6 \cdot 1628}{12 \times 11}}= \pm .145 . \\
& \text { Azimuth of mark }=180^{\circ} 00^{\circ} 01^{\prime \prime} 76
\end{aligned}
$$

Final Azimuth Results, 141 st Meridian at Vukon River Crossing, boundary between Alaska and Canada.
G. Civide Baldwin, Observer.

Date	- Star	Azimuth	v	v^{2}
1907				
Nay	2 a Ursae Minoris	1800003.10	$\cdot 36$. 1294
	143 Helvetii Cephei	" ${ }^{\text {c }}$ 02.29	+ 45	'2025
"	1 Groombridge 750	". "03.77	- 103	1.0604
\cdots	1 - 944	"* 03.30	- 56	${ }^{21} 36$
"	1 i) Urse Minoris	"* "\% 22.54	-20	- 0400
.	${ }^{7} \begin{aligned} & \text { a } \\ & 8\end{aligned}$	$\begin{array}{llll}* / & 6 & 04 \cdot 17\end{array}$	- 143	2.0449
	s a "* "".	" " 04.19	- 145	2.1025
	843 llelvetii Cephei	" 0.045°	- 176	$3 \cdot 0076$
	14 a Urse Minoris	". ${ }^{\text {. }}$ or 33	+ 141	19881
	14 +3 Ilelvelii Cephei	". ${ }^{\text {a }}$ - 01.28	+ 146	2.1316
	14 (iroombridge 75°	"1) "02.15	+ 59	- 3481
	14 is Ursar Minoris	4 $600 \cdot 20$	+ 2.54	6.4516
				19.9180
Mean $=180^{\circ} 0 \mathrm{~V}^{\prime} 02^{\prime \prime} \% 4$.				
Probable error ± 6745				
Azimuth of mark $=180{ }^{\circ} 00002 \times 74 \pm 262$				

Other azimuth observations with the transit instrument were made at North Portal, Sask. ; Coutts, Alta. ; Emerson, Man. : Hazelton, B.C. : and Atlin, B.C. As time obsetvations for longitude were made at all these stations on the same nights as the azimuth observations, a splendid opportumity was afforded of comparing the azimuth as determmed from a time set with the azimuth from a direct observation.

Contts, Aita. F. A. McDiarmid, Observer.

Date	Star	Azimuth of Collimation	Reading on Mark	Azimuth of Mark
10		"	"	"
Aug. 25	a Urse Min.	$03^{\circ} \mathrm{O}$	$23 \cdot 12$	$28 \cdot 13$
$\cdots 25$	i ${ }^{\text {a }}$."	05.71	23.12	28.83
". 25	5i II. Cepliei	05.33	23.12	28.45
" 25	76 Draconis	01.78	$23 \cdot 12$	24.90
** 25	1. 11. Draconis	03.77	23^{12}	26.89
"، 25	30 II. Camel.	02.83	23.12	25.95
-6 25	39 II. Cephei	- $05{ }^{\circ} 90$	23^{112}	39.02
" 29	76 Draconis	01:26	$23 \cdot 19$	24.45
- 29	I. II. Draconis	$05 \cdot 26$	$23 \cdot 19$	28.45
sept. 2	a Urse Min.	$10 \cdot 58$	13.89	$2{ }^{2+4}$
". 2	(3) "* ${ }^{\text {a }}$	13.85	- 13.89	27.74
* 2	76 Draconis	12.29	13.89	26.18
\because	I. II. Draconis	16.16	$1,3.89$	$30 \cdot 05$
1* 2	30 11. Camel.	12.86	- 13.89	26.75
. 2	39 II. Cephei	1490	13.89	28.79
i. 2	Bradley 1672	$1+94$	13.89	28.83
$\cdots 2$	+3 3 Hel. Cephei	$1+06$	1389	27.95
"	76 Draconis	12.46	14.85	$27 \cdot 31$
$\because 4$	I. II. Draconis	$14^{\circ 27}$	- 1485	29.12
$\cdots 7$	3o 11. Camel.	10.06	1738	27.4
". 9	a Urse Min.	12.56	14.36	26.92
-\% 9	76 Draconis	12.65	1436	27.01
" 69	1. 11. Draconis	12.02	$1+36$	$26 \cdot 38$
4 9	30 II. Camel.	$11 \cdot 55$	$1+36$	- 25.91
" 11	76 Draconis	$10 \cdot 56$	16.90	- $27 \cdot+6$
" 11	I. II. Draconis	- 1190	1690	$28 \cdot 80$

Azimuth of mark from direct observations $359^{\circ} 59^{\prime} 32^{\prime \prime} \cdot 61$

$$
\pm " \cdot 20
$$

Azimuth of mark from time sets $359^{\circ} 59^{\prime} 32^{\prime \prime} \cdot 30$

Emerson, Man. F. A. McDlirmid, Observer.

Mark south of observatory.
Azimuth of mark from direct observations $17^{\circ} 59^{\circ} 59^{\prime \prime \prime} \cdot 68$ $\pm " 38$,
Azimuth of mark from time sets $\quad 179^{\circ} 59^{\prime} 17^{\prime \prime} \cdot 36$

Hazelton, B.C. F.A. McDiArmid, Observer.

Date	Star
1911	
June 11	(Urse Min.
- 12	a "
'. 15	a " ${ }^{\text {a }}$
* 16	¢ " ${ }^{\circ}$
" 16	\%) " "

Mark south of observatory.
Azimuth of mark from direct observations $179^{\circ} 59^{\prime} 58^{\prime \prime} .76$
Azimuth of mark from time sets $\quad 179^{\circ} 59^{\prime \prime} 58^{\prime \prime} .37$

Atilin, B.C. F.A. McDiarmid, Observer.

Date	Star	Azimath of Collimation	Read.ng on Mark	Azimuth of Mark
1918		"	"	0
June $3^{\text {a }}$	a Urse Minoris	12.83	54.81	- $00+11.98$
$\cdots 30$	¢ * "	$16 \% 3$	$5+81$	$3^{8 \cdot} 3^{8}$
" 30	(irombridge 944	1593	$5+81$	$3 \mathrm{3} \cdot 88$
- 30	i Urs.e Minoris	1594	54.81	$3{ }^{3} 87$
July 4	a * "	12.17	54.51	+2:34
$\because 5$	(iroombridge 9+4	- 15.83	51.17	38.34
5	; Ursie Minoris	1+ 23	31'7	39.94
$\because 5$	76 Dracums	$1+04$	$5+17$	40.13
$\because 6$	i) Ursax Mmoris	$-\quad 146$	$54+6$. 3988
- 6	51 11. Cephei	- 1611	$5+46$	38.35
" 6	76 Draconis	- 1525	54.46	$39^{\prime 21}$
" 6	1. 11. Draconis	1498	$5+40$	$39 \% 48$
$\because 7$	EUnsat Minoris	- $1+36$	54.40	+0.0.4
$\because 7$	Groombridge 944	- 13.05	$5+40$	+1.35
	i) Urse Minoris	$1+28$	54.40	+0,12
$\because 7$	51 11. Cephei	13.35	54.40	$4 \cdot 05$
$\because 7$	76 Draconis	$1: 93$	54.40	$+2.7$
$\because 7$	1. II. Draconis	1539	$5+40$	39.01
" 10	a Ursie Minoris	- 1037	53.18	+2.8i
10	¢ " ${ }^{+}$	- 1175	53.18	41.43
" 10	i " "	1162	53.18	$4 \cdot 50$
" 13	a ${ }^{\circ}$	13.31	$53 \cdot 32$	40\% 01
" 14	$a \cdots$	10.11	$53 \cdot 32$	43.21
"* $1+$	¢ "	12.07	$53 \cdot 32$	+1.25
$\because .4$; ${ }^{\text {\% }}$	1264	53.32	40.68
" 15	є ${ }^{\text {/ }}$	12:30	$53 \cdot 10$	+0.80
" 16	¢ ${ }^{\text {a }}$	- 10.84	$53 \cdot 25$	+2.41
.717 .17	E ${ }^{\circ}$	- 10.03	53.1	+3.38
$\cdots 18$	E ${ }^{\circ}$	- 10\%7	53'95	43.18
". 20	a ${ }^{\text {c }}$	- 11.69	53^{18}	+1.49
- 20	c ${ }^{\prime}$	- 10.38	53.18	+2:80
Mean $0^{\circ} 0^{\prime} 40^{-\prime} .81$				

star	June 30	July 4	July 5	July 6	July 7	July to	July 13	July 14	July 15	July 16	July 17	July is	July 20	Mean
		"	,	"	"	"	"	"	"	"	"	"	"	"
$\begin{array}{ll} 11 \\ M \end{array}$	41.48 3×38	42.34			fo O_{1}	$\begin{aligned} & 42.71 \\ & 4143 \end{aligned}$	4001	$\begin{aligned} & 4,3 \cdot 21 \\ & +1 \cdot 25 \end{aligned}$	fo:\%	$42 \cdot 1$	$43 \cdot 38$	43.18	$41 \cdot 49$ $42 \cdot 80$	4205 414 49
ir. 944	$3 \mathrm{~s} \cdot 88$		$38 \cdot 34$		4135									$39 \cdot 55$ 40.16
, M.	${ }_{3} \mathrm{~S} \cdot 87$		$39 \% 4$	39.82 39.21	40.12 42.47	$40 \cdot 50$		os						40.6
HI.C.				38.35	4 LO									39% 39.25
11. 1).				3948	3.01									39.25
Iean	$30 \cdot 53$	+2,34	39.34	$39^{\prime 22}$	40.67	4190	4001	4171	40 8o	42.41	43.35	43.18	$42 \cdot 15$	

An examination of the boundary azimuth results will show that F. A. McDiarmid's six observations on April 30th give an azimuth of $1^{\prime \prime} 55$, and the six observations on May 2nd give $1^{\prime \prime} \cdot 6$, and G. C. Baldwin's five observations on May 1st give $33^{\prime \prime} \cdot 00$, three on May 8 th give $4^{\prime \prime} \cdot 21$, and four on May 14 th give 1"•-4.

The Coutts observations grouped by nights are as follows :

Date	Azimuth			Number of sets
	\bigcirc	59		
August 25	359	59)	32.55	7 sets
" 29	359	59	3355	2 sets
Sept. 2	359	59	$32 \cdot 28$	8 sets
14	359	59	32.04	3 sets
4 9	359	59	$33 \cdot 44$	4 sels
* 11	359	59	31.87	2 sets

The observations at Emerson grouped by nights give the following results :-

Date		Azimuth		
Sept.	17	179	59	15*63
*	18	179	59	19.06
${ }^{6}$	19	:79	59	18.42
*	20	179	59	18.17

A consideration of all these observations leads to the conclusion that there is some error peculiar to each night. What that error is, or what is the cause of it, it is impossible to determine. The explanation usually given is that lateral refraction displaces the mark or star different amounts on different nights. Therefore to insure great accuracy in azimuth determination it is better to increase the number of nights than the number of observations on the same night.

The errors arising from faulty declinations and right ascensions of the stars must be small indeed, as the places of all the stars used are well defined by many observations at the fixed
observatories. If the observation is made at or near elongation, the only source of error is from inaccurate declinations or poorly determined latitude ; and if the observations are made at or near culmination the errors arise from errors in the right ascension. If the star is observed at both upper and lower culmination any errors of azimuth in the separate observations due to errors in right ascension or time will disappear entirely in the mean.

The observer's personal errors are errors of pointing upon the star or mark, errors of reading graduations if a horizontal circle is used, errors in estimating times of pointing and errors in reading micrometer and level. With an experienced observer the errors of setting will be constant and in the same direction either right or left of the object, and so will have little effect on the azimuth. The azimuth observations of 1910 and 1911 were made at culmination, the programme being to read on the mark, read on the level, observe the transit of a polar star over the whole or part of a comb, reverse the instrument, observe the star over the same part of the field as before, read the level, and again read on the mark. Often both sets of readings on the mark were made either before or after the star observations. The instrument was mounted so rigidly that no fixed variation was discernible in the different readings on the mark during a night : and, indeed, the mark readings from night to night were very similar, showing that the change in azimuth of the instrument was small indeed. There follows below a list of values of the angle between the line of collimation, and the line from the instrument to the mark, on two different nights.

Date	Time		Angle between lime of Collimation and line for mark
$\begin{gathered} 1910 \\ \text { August } 25 \end{gathered}$	h	m	
		35	23.78
		25	23.53
		OS	22.45
	21	40	23.11
	22	o')	22.86
		42	22.97

Wate	Time	Angle between lines of Collimation and line fis mark
1910 h m 02.89 lulv 12 16 48 02.75 18 10 02.99 19 17 03.54 20 50 02.74 21 24 02.92		

Any differences in the angle between the line of collimation and the line to the mark in the above examples may safely be attributed to errors of observation, and so the mean of all the readings for a night was taken as the value of the angle for that night.

As the star observations were recorded on a chronograph, the errors of reading micrometer and estimating fractions of a second were entirely obliterated. From an examination of several sets of micrometer readings on the mark, the probable error of a single setting was found to be about " " 30 ; and the probable error of the mean of ten settings was *"095.

The only other personal error that enters into the work is the bisection error. If it can be assumed that the error of setting on a mark is the same as the error of setting on a star. then the bisection error has no effect on the azimuth. But some uncertainty may exist as to whether bisecting a mark is the same as bisecting a moving object such as a star. It was the intention to make some observations for bisection error during the season of 1910 , but the weather conditions were so poor all season that all the good weather available was required for the regular ohservations. However, in Ottawa during the winter of 1910-11, a few observations were made to determine, if possible, the effect of bisection error on an azimuth observation. Fout polars were observed over the outside combs of the transit with the eye piece at right angles to the direction of motion of the star image, and over the inside combs with the eye piece at 45° to the vertical. The first and fourth observations were taken with the eye piece in the same position; the second was taken
with the eye piece at 45° to the left, and the third with the eye piece at 45° to the right. In both the second and third observations the star appears to move vertically, but in opposite directions thereby removing from the mean any errors of bisection. In the following table appear the results.

Star		Azimuth, Eye Piece Vertical	Azimuth, Fye Piece at 45°

It will be seen on comparing the above results that the difference is not more than can be attributed to errors of observation. The differences between the two observations in (1) and (3) are of opposite signs to those in (2) and (4). It would therefore seem that any errors in azimuth due to fanty bisections are of small dimensions.

A comparison of the observations of stars at upper and lower culmination at North Portal, Coutts and Eimerson shows little difference in the azimuth results.

Station Upper Culmination	Azimuth from Lower Culmination					
	0	0.3				
North I'ortal	359	59	$50^{\prime \prime} 54$	359	59	$50^{\prime \prime} 15$
Coutts	359	59	$32 \cdot 77$	359	59	$32^{\prime 2} 45$
Emerson	179	59	$17 \cdot 70$	179	59	$17 \cdot 57$

The differences are " $\cdot 3!, \quad " 32$ and $" \cdot 13$, but with so few observations it is impossible to say whether they are due to errors of setting, or are accidental.

A comparison of the azimuth determinations from time sets and by direct observations shows that a very good azimuth result is derived from our time sets as at present constituted. The following table gives a comparison of the azimuths obtained in the two ways.

Station	Azimutls from Direct Observation			Azimuth from Time Sets		
North I'ortal	359	59	50'37	$\stackrel{0}{359}$	59	
Couts			32.61	359	59	32-30
Emerson			17.63		59	17•36
Hazelton	179		58.76		59	$58 \cdot 37$
Atin	0	0	40.31	0	0	4146

The method of observing azimuth with the transit instrument in the meridian is not generally used, but the results obtained speak well for it. The average probable error obtained under favorable conditions was about \pm " 20 at Coutts, North Portal, Atlin, and Hazelton. From the work done on the Mexican boundary by the United States Coast and Geodetic survey the average probable error was about $\pm " 28$. There were probably more observations taken on the Canadian work than on the Mexican boundary work, and consequently a smaller probable error would be expected; but the results show at least as great a degree of accuracy with the method used at the stations mentioned above as that obtained on the Mexican boundary. In the latter work the observations were all made on Polaris near elongation, while in the Canadian work any star of declination greater than 82° was used at either upper or lower culmination. The observations are all recorded on the chronograph, and the collimation error is entirely wiped out by reversing the instrument between the two observations on the star. The azimuth observations were made on the same nights as the longitude and latitdue observations. By so doing a great amount of time was saved, but the results no doubt would have been better if the observer had confined himself to one kind of work on a single night. However, with cloudy weather, smoky nights, uncertain telegraph connections to overcome, the field observer is glad to put in long hours on every clear night. The large probable error at Emerson is attributed largely to lateral refraction. Emerson is in a very level district, and at the time of observation the farmers were engaged at their fall ploughing. The
azimuth line passed a few feet (about three) above a freshly ploughed field, and so uncertain readings might be expected. Conditions might even change sufficiently during a single night to account for a good part of the residuals in this work.

With our instrument as at present constituted, it is necessary to have the azimuth mark nearly in the meridian of the observer. If an instrument were devised with a horizontal circle and so arranged as to reverse the telescope in the wyes, then the mark need not be in the meridian, but may be in any direction whatever. With an instrument so constructed it would only be necessary to make one reading of the horizontal circle on mark and star. In the ordinary micrometer-direction method it is necessary to read the horizontal circle with vertical circle both right and left. The great difficulty in the manufacture of such an instrument would be to have it sufficiently rigid and stable to parmit of reversal without in the slightest degree jaring the instrument, or altering the readings of the horizontal circle. However, observations can always be taken on a mark in the meridian, and the azimuth line comected with the triangulation or survey.

Dominion Observatory,
Ottawa, Canada,

PLERSEIDS AND IEEONIDS

ISY W. F. DENXING:

「HISR: form the two great meteoric showers of the year.
Famed in history, familiar to all observing astronomers and fraught with interesting associations, they are invariably watched with enthusiasm. Vet they are utterly dissimilar in character.

The Perseids come every year in moderate intensity and endure for the long period of six weeks, July 15 to August 25.

The Leonids appear in great strength for a few hours at intervals of about $33^{1 / 3}$ years, but are presented in numbers only equivalent to a minor shower at most returns, thongh seldom if ever entirely missing.

When the I,eonids assume their most abundant aspect they form the grandest celestial spectacle of a generation as in 179:4, 1833 and 1867^{7}. But the expected fine apparitions of 1899 and 1900 failed, the swarm having been drawn away from the earth by the attraction of the major planets, jupiter and Saturn.

Which of the two showers is entitled to be considered the more important? Each has told its own engrossing story. But the Perseid swarm has many claims to precedence. It never fails to embellish our summer skies with brilliant shooting stars. In July as well as in August they are showered into the earth's atmosphere and about sixty or seventy millions of these fiery visitors are consumed at every return.

Yet there is no apparent diminution in the strength of the display, nor is it likely that any decline in numbers will become noticeable, for it has been calculated that $300,000,000,000,000$ fragments must compose the entire stream.

The Leonids only visit us on the cold damp mornings of November, and in full plentitude and brilliancy only once in an
extended series of years. On frequent occasions they are apt to prove disappointing and cannot be seen at all in England until a late hour of the night as their radiant does rot rise in the I: N. I: before $10.15 \mathrm{p} . \mathrm{m}$.

The Perseids are always trise to time and place. They are visible at any hour of the night. They come as sure as the darker evenings of August and formerly exhibited great abundance on St. Lawrence Day, August 10, but there having been no leap year in 1900 they now appear a day or two later than that anniversary.

As an old meteoric observer, who witnessed the great J.eonid display of 1866 and who is still watching meteors to-day, let me say that I esteem the Perseids as essentially the chief meteoric phenomenon of the year. Regular in its returns and fairly rich in its exhibitions, it may be traced amid all the delightful surroundings of genial evenings in the holiday season. The Leonids have sometimes far eclipsed it in interest, I know, and there have been years in which men talked only of the November meteors. as though the August Perseids had little share in the making of meteoric history.

And, truth to tell, there is something singulatly impressive in these blazing Leonid messengers on a keen November morning. There is frost in the air, the stars sparkle brilliantly, all is still, while high in the south-east the stars of Leo distribute their shafts of wavering light to all parts of the firmament. The scene is striking, for the imagination finds it easy to impart a threatening aspect to the Sickle of the Lion as it fitfully bombards our terrestrial atmosphere with possibly dangerous intent. Not so the August shower, sprinkled from a position near the amiable lady reclining peacefully in the chair of Cassiopeia.

These meteors have a more harmless look and may be likened to glow-worms flying high along the genial zephyrs of the summer season.

The following are some particulars concerning the two streams :-

P'erseids
Date of maximan display
Duration
Period
Parent Comet
Period
Radiant Point of Comet
Radiant Point of Meteoric) Shower
Height of Meteors at beginning
Height of Meteors at ending
Length of Filight
Observed Velocity
'Theoretical Velocity
Fiirst Historical Record of , Shower

Angust 11
July 15-Aug. 25
105 years?
1862 III.
$123 \cdot 4$ years?
$43^{\circ} 5+54^{\circ} \cdot 4$
$44+57$
$81 \because$ miles
i3. 4 miles
$47 \cdot 8$ miles
38.8 miles
$3 \times$ miles
July, A.t. $\times 11$

Leonids
November 15
November - -20 ?
$33^{1 / 3}$ years
1866 I.
$33 \cdot 176$ years
$150^{\circ} 5+23^{\circ}$
$150+23$
82.7 miles

557 miles
$54 \cdot 1$ miles
$47 \cdot 9$ miles
44 miles
October, A.1). 902

Many persons have been rather disappointed in recent years on looking out on August 10 and finding few meteors visible. The fact is that the best night is now usually the 11 th or 12 th. The date advances slowly with the time; thus the date of the shower in A.D. 811 was July $2{ }^{5}$, so that it gets about one day forward in a century.

This year there were a fair number of meteors visible on August 11 and 12 but comparatively few on August 10. 'There was a large proportion of brilliant objects and many of them having been recorded at several stations will be subjected to further discussion and their real paths computed. The radiant showed the usual displacement to the eastwards. The first oncoming members of the display were remarked on July 14 and the latest traces of the display were visible on August 20 . Clondy weather has, however, interfered, as it always does, with the perfectly satisfactory tracing of the shower's progress from night to night.

In recent vears very few I,conids have been visible. 'There have been, however, a few stray shots from the sickle of leo at
the middle of November and these have sufficiently proved the continued activity of the stream though under a meagre aspect. The shower should be carefully observed every year and its varying strength recorded. This also applies to another strong but irregular display from Andromeda and connected with Biela's lost comet. It was distinctly visible in 1913, November 18-21, when I observed nine of its slow meteors form a radiant $27^{\circ}+42^{\circ}$. I have always found this radiant apparently spread over a large area and it is difficult to get the centre accurately.

Bristor., Eivgiand,
August 25, 1914.

PLATE NHIT.

PHOTOGRAPHS OF I.HEHTNING;

fournal of the Reyal Astronommal Soriety of Cimaiti, 1q1,

HLATE: $1:$

PHOTOGRAPHS OF I.IGHTNING;
Taken at Ottawa, Julv 10,1914 . Iby A. Steatwontiy.

SPIECTRUM OF LIGHTNING

By A. STFAHWORTHY

HAVING for some years photographed lightning at night. and having been successful in photographing lightning in broad daylight, (zide Journal. of the Royal Astronomical. Society of Canada for November-December, 1912,) I deter mined to secure a spectrum of lightning.

A favorable opportunity offered on the night of July 10 th last, when a storm began to develop at 6 pm . at Ottawa in the west. Low lying cumulus clonds slowly spread towards the north and south where distant lightning first manifested itself. The clotds, becoming denser and denser, approached Ottawa and slowly rose above the horizon. By 7 p.m. the first rumblings of thunder began, and by 9.30 p.m. the pyrotechnic display in the west became so vivid that I brought out the two cameras which I had in readiness at my house overlooking MeDonald lark, giving me an outlook from the west through the north to the east. One camera was fitted with stereoscopic lenses, the other was an $8 \mathrm{in} . \times 10 \mathrm{in}$. camera with 2 in . lens. 16 in . focus. In front of it was fitted in a box one of our 60° dense flint glass objective prisms. The box could be rotated on the collar of the lens, thereby enabling spectra to be obtained over a range of 180° without moving the camera. It must be observed here that the size of the small box and the prism not physically covering the lens made it possible for a flash coming from a certain direction to get through the lens and onto the plate without passing through the prism. And this is exactly what happened, as seen on Plate XI.. which shows the spectrum secured with the superimposed other flash.

I made four exposures on Cramer isochromatic plates, for, as I thought, four spectra. One of the plates turned out a blank,
one showed a very weak spectrum, one showed the fine spectrum on the above plate, while the last showed remarkable dotted curved lines, one at the top of the plate and several parallel ones below. I utterly fail to divine their origin. The exposure and the position of the camera were identical in the two cases. None of the other three plates shows this phenomenon.

As stated, I was busy with both cameras, securing some ten fine stereoscopic photographs of lightning (Plates VIII.. XI., X.) besides the spectrum. The time was approximately between 10 and 10.30 p.m. For the spectrum I knew that it was desirable to have an intense flash not very distant, and hence abided my time watching the motion of the storm. I estimated the distance by sound of the flash giving the spectrum to have been half a mile. My time was very much occupied, and with so many flashes and the almost constant roar of thunder, an accurate determination of the distance was impossible. The lightning, however, was very close. During all this time no rain was falling. Suddenly, about $10.30 \mathrm{p} . \mathrm{m}$., there was a swish and whirring through the air and trees, and the next moment a torrential rain descended. It came so suddenly that I scarcely had time to save the cameras from being blown away. and to find shelter in the house from the verandah at the second story where I was stationed. I may say that later, 11 p.m.. I took a stereo from an open window looking south, while a heavy rain was falling, and strange to say this shows the houses alnost as distinctly as if taken in day-light.

The following measurements of the lines of the spectrum (See Plate XII.) have been made by Mr. J. B. Cannon, of the Observatory, who adds the accompanying note.

PL.STE 8

PHOTOGRAPIS OF I.H:HTNING,
Taken at Ottawa, Julv 10, 1944. By A. Siearlwomtis
fiuthal of the Royal Astronominal Somety of Cisnadi. 191

SPECTRUM OF J.IGHTNING:
I'holographed at f)ltitsa, lys A. Stearlworths, fuly 10, 1914. (bee prage 345).
The straight sireshs at the loottom are spectra of strect lamp's
Journal of the Rioyal As'ronomital Soiety of Canala, rort

LINES IN SPECTKIN OF I.IGHTNING:

WaveLength	Character	Fiss: Wave-Lengh ${ }^{1}$	
5683^{*}	strong, well detined line	5683	r. edge
561×3	broad	5600	mas.
$5550 \cdot 3$	Iroad and strong		
5423.2	violet edge of gradnally lading land		
5345\%	faint, hresel band	530%	\therefore crlge
5180.9	faint, fresad line	5175	
50037	good, strong hand	50037	
49285	faint line		
$4 \mathrm{Cl}^{2 \%} 4$	broad, fairly strong band	4842	
$4800 \% 7$	faint line	478 ,	
$1{ }^{4680} 5$	faisly good line 	$4^{\prime} \times 0$	r. edge
46450			
4 $4135 \cdot 6$	stronge, clear line more laint lines	4030'7	
+ 46053	lairly strong liroad lines	460	1. eds.
4542 S	faint line	4535	
4522-8	faisly strong line		
$\begin{aligned} & 1+48 ; 8 \\ & 1+468 \cdot 6 \end{aligned}$	a pair of rather weak lines, vo owe the stronger		
144425	strung, clear line line fainter and broader very faint line	i $i+39$	
$1+27 . \mathrm{S}$			
144134			
	strong Tine	14359	
$1^{43540 \%}$	lime less strong fainter, broad line		
14340%			
$4308 \cdot 1$	faint, brond batul		
+270.2	vers faint very faint		
4264.1			
42519	fetur lime		
42378	atronse line	1235	
42177	-trong, clear line		
$4210 \cdot 1$	faint line		
	very taint lime lainly strong line	1418:	
$4170 \% 4$			
14151 2	groul, strung lime	4154	
14143^{\prime}	Sored, line not so sttong as 4151		
41270	very faint line		

LINES IS SPECTRTM OF I.IG:11TNINC: (Contimmed)

Ware- length	Character	Fux Wiave-lengils
$\begin{aligned} & 1+106 \cdot 1 \\ & 1.4025 \cdot 8 \end{aligned}$		4:05
$40 \% 006$	raber faint line	4077
40413	roorl. strong litue	$4041 \cdot 5$
$4036 \cdot 5$	faint line -	
40247	faime lime	
SO15:3	faint line	
309**	gourl, strong lime	3 mot
$\begin{aligned} & 13050 \cdot 2 \\ & 130527 \end{aligned}$	fint pair of lines	$394 ;$
$\begin{aligned} & 13925 \cdot 2 \\ & 139190 \end{aligned}$	taint pair of lite-	3)15
3 4 S -7	faint line	38.00
3¢8s\%	vers faims	$38_{3} \mathrm{~S}$

 Jongition.
 fonmal, Sl'lll., page 2a5. The higures here are thone given muler the heading "low power.

DOM\&NIOX OISSERJATORV,

> OTPAW: CIXADA,

September, 1914

HLATE NII.

THE METEOR-FALI, OF ENSISHEIM (1492)

By C. A. CHN」

WHIL, $:$ reading the printer's proofs of the article on " Meteorites" by Mr. H. B. Collier, which appeared in a recent number of this Journai,* it occurred to me to verify some of the historical statements in it, by reference to works which were at my hand; and I was surprised to find considerable discrepancies between different authorities. 'This was especially so in the case of the famous meteorite which fell at Iinsisheim, in Alsace, 1492.

A somewhat extended account of the occurrence is given in Chambers's " Handbook of Astronomy," \dagger and in Ball's " Story of the Heavens." + Chambers states that the narrative he gives was drawn up at the time by order of the Emperor Maximilian, and deposited with the fallen stone in the church at Ensisheim; but the two printed accounts, though identical in the main, differ in some particulars.

Following is the statement as presented by Chambers, but in those places where Ball's version differs from it, the latter is given in brackets.
" In the year of the Lord 1492 , on Wednesdas, which was Martimmas Eve, I on the Wednesday before Si. Martins Dav, | November 7 ht, a singular miracle occurred: for between $\$ 1$ oclock and nown there was a lowd clap of thunder, and a prolonged confused noise, which was heard at a great distance; and a stone fe'l from the air, in the jurisdiction of Ensisheim, which weighed 260 pounds ; and the confused noise was, moreover, f at wher places \| much louder than here. There a child saw it strike on a field lon ploughed ground) in the upper jurisdiction, [field] towards the Rhine and Jura, I the III] near the district of Giscano, [Giagang] which was sown with wheat, and it did no harm, except that it made a bole there;

```
*Vot. VII., 1r. 313 (Septemter October) 8913.
+101.1., p. 594 (4thed.).
* Page 352, qth ed.. IS88.
```

and then they conveyed it from that spot, anel mans pieces were brohen from it, which the landrogt fortade. They therefore caused it to be placed in the church, with the intention of suspending is as a miracle; and there came here many prople to see this stone. So, there were remarhable conversations about this stone: hitt the learned said they knew not what it was; for it was heyond the ordinary course of nature that snch a large stone should smite the earth, [omit 'the earth'] from Hee height of the air, but that it really was a miracle of Gent; for, lefore that time. never any thing was hear. like it, nor seen, nor deseribed When they found that stone, it had entered into the earth to the depth [tos half the depth] of a man: tature, which everybody esplained to be the will of foul that it shoukd the found: and the noise of it was heard at Luceme, at Nitting. Nillingenland in many other places, solomil, that it was leelieved that howes had heen overturned : and as the King Mavimilian was here the Monday after St. Catherine's Day of the same var. His Koyal Excellency ordered the stone which had fallen to he brought to the castle: and after having conversed a long time about it with the moblemen, lue said that the people of Ensshecims should take it, and order it tu lie liung up in the church, and not to allow anylooly to take anything from it. His Excellency, however, took two pieces of it, of which he kept one, and sent the other to Duke sigismund of Austria ; and they spoke a great deal about this stone, which they suspenderl in the choir, where it still is: and a great many people came to see i^{+}

Abstract

A copy of the original German inscription which hung under the stone in the church at Ensisheim for some time is to be found in Gilbert's Annalen, vol. 18, p. 280-281, 1804. The text as there given was supplied by Hofrath Blumenbach, and it s as follows:--

A.D. 1492 ufl Mitwochen nechst vor Martini dea gten Tag Novembris geschah ein seltsam Wundergeichen: denn anischen der eilften uad awöften Stund zu Nittagzeit kam ein grosser Donderhlapff und ein lang Getioss, welches man weit und breit hart, und fiel ein Stein von den Liften herab bei Ensisheim in ihrem Bann, der wog twei hundert und sechaig lolund, und war der klopfl anders wo viel groisser dann allhier: Da sahe ihn ein Kinabe in eim Acker im whem Felde, so gegen Khein und III zeucht, bei dem Gisgang gelegen, schlagen, der war mit Waitzen gesäet, und that ihm hein Schaden als dass ein Loel innen wurd. Da fihrten sie ihm hinweg, und ward mannich Stich davon geschlagen: das verbot der Landrog! ; Also liess man ihn in die Kirche legen, ihn willens dann an einem Wunder autzuhenken, und kamen viel Leut allher den Stein zu selien, auch wurden viel seltsame Reden von dem Stein geredet. Aleer die Gelehrien sagten sie wissen nicht was es wär, denn es wär tibernattirlich dass ein solcher Slein sollt von then Lifften heral, schlagen, besonders es wäre cin Wunder diottes, denn es cuvor nie crhort, geschen noch geschrieben hefmaden worden wäre. Dat man atch den

Stein fand, da lag ef bey halb Manns tief in der Erden, welches jectermann dafir hält dass es Gottes Wille wär, dass er gefunden wurde. Und hat man den Khopft zu Lucern, zu l'fillingen und sonst an viel Orten so gross gehort dass die Lem meynten es wären Häuser umgefallen. Darnach uf Montag nach Catharinen gedachten Jahrs als Koinig Maximilian allhier war, hiess ihre himigl. Excelleme den Stein so jungst gefatlen, ins Schioss tragen, und als man ihn dahin brachte, hielt er Excellenz viel Kurzweil mit dem Stein, und da er lang mit den Herrn davon geredt, sagkte er die von Ensisheim sollten ihn nehmen und in die Kirche beissen aufhencken, auch niemands davon lassen schlagen. Doch nalum er Excellenz zwey stick davon: das Eine behielt sein Excellenz: das Andere shickte er Ilerzogr Sigmunden von Oesterreich, und war eine grosse Sage von dem stein, also hinck man ihn in den Chor da er noch henck. Auch kam eine growe Welt den Stein zu sehen.

A comparion of this with the above translation will show that Ball's version is the more accurate.

This same narrative is given in condensed form by Fletcher in his " Introduction to the Study of Meteorites" * on page 19 , but he gives the date as November 16. and states that the stone fell " in a field near the canton called Gisgand, where it made a hole more than five fect deep."

In the article " Meteorite" in the "Encyclopedia Britannica," 11thed., volume XVIII.. p. 262 (written by Fletcher) the date is given as November 10. This is probably a misprint for 16.

Kirkwood in "Comets and Meteors," (Philadephia, 1875,) p. 59, gives November 7 as the date, states that the aerolite weighed 276 pounds and that it penetrated the earth to a distance of three feet.

Flammarion, in his "Popular Astronomy" (translated by ($: 0$ ere), gives the date as November 7, the weight as 158 kg . $=$ 348 lbs ; and says, further, that the stone was first placed in the church, but that now it is in the mineralogical musenm of Vienna.

Before going further it may be stated that November 7, old style, is the same as November 16, new style, which accounts for the apparent difference in dates ; also November 7,1492 , fell on Wednesday. Martinmas was a festival in honor of St. Martin of
*L. Fletcher, M.A., F.R.S., is keeper of Minerals in the British Museum: this small volume is one of the admirable guide. books to that institution.

France, celebrated on November 11, which in $14!2$ fell on Sunday.

Turning now to Wilfing's encyelopedic work entitled, " Meteoriten in Sammlungen und ihre Literatur" (1×97), I find over two pages of references to various published articles relating to this famous meteorite, together with a list of 65 museums possessing portions of it. The original weight is given as about 127 kg . $=279 \mathrm{lbs}$., of which, 70.4 kg . can now be located. Of this, 54.8 kg . is preserved in the town-hall at Ensisheim.

The literature on the subject is arranged by Wiulfing in chronological order and the earliest publication bears date $14!2$. It is a folio-sheet, printed on one side only, and contains a I, atin poem by sebastian Brant, the author of "Das Narrenschiff." (1494) or "The Ship of Fools," a work of great importance in the history of both German and İnglish literature. On the sheet is also in German a version of the occurrence, ending with an admonition to King Maximilian, who at that time was with an army in Aisace. Under the German title and above the address to Maximilian is a wood-cut representing the fall of the meteoric stone. A copy of this sheet is in the university library at Basel, Switzerland.* In 1492 Brant was Dean of the Faculty of Law in this university.

The contents of this sheet are reprinted in Poggendorfi's Annalen, vol. 122, p. 182, 1864 : and I thought it of sufficient interest to reproduce it here.

First of all, I give the L.atin text. With the aid of my colleagues, Professors Fletcher and Carruthers, of the Department of Classics, the real meaning of the somewhat obscure Latin was obtained; and my friend Dr. A. D. Watson then put the translation into linglish verse. He insists that he would hardly call it poetry, but I venture to think it quite as good poetry as the original. The German version is not reproduced here, but I am able to present a translation of it in flowing English by my colleague. Professor A. E. I.ang.

* The writer had hoped to reproduce this sheet in fac simile in the fowk Mal, but the photographic copy of it which had been promised has soot yet been received.

DE FUI.GETRA ANNI XCII

Perlegnt antipuis miracula facta sulo annis ')ui volet: et nostros comparet inde dies.
Visa licet fuerim portenta, horrendague monstra Iacere e celo: Hamma, comona, tables.
Astra diurna, faces, tremor et telluris byatus Et bolides. Typloon, sanguinensigue polus.
(Circulus: et lumen nocturno tempore visum. Ardentes clypei el, nubigeneque fere
Montibus et visi quondam concurreve monten Aranorum et caepites, et tuha terribilis.

Iate phacre e celn vismm est, frugesque calyhapue I- ermun etiam, et lateres, el caro, lana, cruor.
Vit sescenta aliic, ostenta ascripta, libellis : I'roligiis ausim vix similare novis.
Vinio dira quidem Fridenci tempore primi Et tremor in terris, hunaple. solque triples.
Itine croce signatus I'riderico rege secmadn Excidit inscriptus grammate, ah, hymbre lapis.
Austria quem gemmit seniur Firidericus, in agros Tercius hume proprios: el cadere arva videt.
Nempe quadringentos, plus mille poregeral amaos Sol noviesque decem signifer, atque duos.
Septem praterea dat iclus, metmenda novembris: Ad mediun. cursum tenderat illa dies.
Cum tonat horrendum: crepuitque per aera fulmen Multisonum : hie ingens concialit atyue lapis.
Cui species dette evt, aciesque triangula: obustus Fist color, el terre forma metalligere.
Missus ab, sobliquen fertur : visuspue sub auris Saturni quatem mittere sydus habel.
Senserat hunc Einshein. Suntgandiat sensit : in agron Hllic insiluit, depupulatus humum.
Etui licet in partes fuerit distractus ubitue : Pondus athuc tamen hoc comtinet, ecce vides.
Efuin mirum est potuisse lyyemis cecidisse diebus : Aut heri in tanto frigore congeries?
Et nisi anavagore referant monimenta: molarena Casurum lapidem: credere et ista negem.

Hic tamen auditus fragor undique littore Kheni :
Auliit hunc Uri proximus alpicola :
Norica vallis eum, Suevi, Rhetique stupelant : Allobroges timeant : Francia certe (remit.
"hicquid id est, m.gntm portendit (cre le) futarum
Omen : at id veniat hostibus oro malis.

THE THUNDERBOLT (OF 1 \&のz

By Sbmantas Brant
Emahiah verse hey Alberi 1), Wulat
All ye who will may read of fearsome things
And marvellous, of crowns and llaming wings, of onens dread, and poitent meteors dire, That blazed the ancient dome with lurid fire :

When lofty torches dartling arrows down And fierce-eyed heasts made all the shadows frowns. Day died to blachness, and the night was remt With lightnings or with mist of stars leesprent. Hark to the trump of terror: Clang of arms Kends the bewildered skies with strange alarms. While down their archways pour in motley flowd Fiesl, wool and tiles all mised with milk and hanol. Horrific noises mark the dreadiul clash
of fiery shields that 'gainst the mometains crash: Bright-gleaming shards fall burlling through the ait And cleave the lurid dark with awful glare. Farth gapes and trembles: stars are seen by day; Midnight is vivill as moon in May.
A thousand volumes scarce the tale could tell
of all the horrors of that ancient hell.
In recent times, earth trembled in a suonon, Aghast to view a trople sun and moon.
Twas in the days of Frederick, named the I'irs. This prorligy on human vision burst.
In fourteen-minety-two, a feartul light
Blazed all the heavens and quenched the myriad night. Oer Frederick Second's lands, they teil,

The awesome thmalerholt, fire-flinging, fell.
At moon, that dreal November day, through air
IS whirlwinds tempented, "mid thunder's lilare,
[.awn from the shies was hurled the mighty stone
S.gne I with a cross in tharacters unknown.

The yomager frealerich. Horn in . Instria, stoul, Beheld its fatl - discemed the holy rood -
Its shape triangular on every side,
Its hue as iwere with deepest umber dyed.
With rattling sound, the ore wats sisleways hurle
With intluence like a great saturnian world.
The holt Ensisheim saw, Sungaudia tou,
And still is kept intact for puiblic view.
since from the akies it fell, its whlid state
So heal doth fisee, mo culd disintegrate.
This was by Anavagoras forctobld
IVe could we tuot such thing- with eredence hold.
Vet, where the streams the rugged mountains gird,
The rumbling crash in switaerlant was heard:
The U'i people and the Rhineland howe,
The Suthians atull the Noric valley tow.
Let Allolruges lear it: Tremble lirance:
Thuse anful portenis broul some strange mischance.
Whate er it lxe, I pray the blow may fall
Upon our wicheal enemies. Cood save us all!

(if) A. F. I.小い
Mans a man matsels at storien from foseign lands. L.et such an one alse read and note this acconnt.

There have been seen many marrels
In the heasens, comets and liery dants,
Burning torches, flames and crowns, And circles about the monos
It the heavens. Iblood and liery shiehls. K.sin fashioned in the form of anmals,
shocks, crachinge of heaven and earth And mans other strange things.
Wesiantly twon mountains knoch themoclves 20 pieces. Horrible cravl of trumpets and of arms,

Irom, milh, rain, bleel, grain, Brich, meal, wool, of heaven's anget.
A - well as other wonders of that kind.
Then, in the reign of the firot I reelerich.
lieniles earthquake and darhnens.
One satw three suns and monns.
And under the Emperor Firederick,
The secund, fell a horrible stone.
Its form was large, and thereon waw a cro.... And other writings and secret sense,
And during the time of the thisel Frelerick. Bom lord of Austria.
There rives here, in his own lamer,
The stone that lies here by the wall.
When they wrote fourtcen homired years.
On St. Florence Day it was
Zinety and two at noon-day
There came a dreadful thuader-crash.
Three-hundred weight heavy, fell this stone Ilere in the field lefore Ensishoim.
Triangular in form and blackened even, As though made of mineral and eath,
Also was seen in the air.
It fell slanting into a cleft in the carth.
small pieces fell here and there.
And scattered far, they leard its roas
Even in Tunow, Neckar, Aar, Ill and Rhine.
Sclusiz, Uri, and the Inn liears the clap,
Ason the Burgundians hear the repurt,
The French feared it much,
And rightly, I say that it betokens
An eopecial plague to these propte.

The second reference to the meteorite is contained in Liber Cronicarum (Book of the Chronicles) written by a Nuremberg physician named Hartmann Schedel, and first published in I.atin in 1493 : afterwards in German in 1496, at Augshurg.

The part which refers to this event is on leaf 300 , page 1 . and in English runs as follows :-

Now, as heretofure in many places, many and strange things have ficen reported as happening in the sky, and especially that a stone marked with a cross hat fallen at the time of Emperor Frederick II., so also in the time of the Eimperor Irederick III., in the year of Christ our Saviour 4922, on the seventh day of the month of November at moon a large stone of about a hundred-weight and little smatler than a salt-shovel [saltzscheyb)], shaped like a (ireek Δ and triangular in form, fell down from the sky near the village of Dinsisheim in the Suntgew, and, as a witness of the strange event, is still in existence.

For the translation of the old German I have again to thank Professor I.ang.

The above was republished in Poggendorff's Annalen, vol. 121, p. $3: 33,1864$, and at the time was thought to be the earliest printed record of the phenomenon, but it appears that Brant's verses preceded it.

notes from the meteorological service

 Aretst

Temperature - There were no very wide departures from the normal temperature in any of the Provinces. but, as the month advanced, there was a tendeney towards cooler conditions, and the larger portion of all the Provinces, exclusive of Alberta, shewed an average temperature slightiy below normal. The largest negative departure was 4° at Qu^{\prime} Appelie. and the largest po-itive was 3" at Calgary, Alberta.

Procipitation - The larger part of the Dominion, as in the previous month, again experienced a shortage in rainfall, and this was especially marked in Southern British Columbia, in parts of Sonthern Alberta and Saskatchewan, and in Northern Ontario and lastern Quebec. In the Peninsula of Ontario, on the other hand, the rainfall was exceptionally heavy, while in the Southwestern portions of Quebec and the Maritime Provinces, and also in Northern Alberta and Saskatchewan, it was either equal to or slightly exceeded the normal amount.

Shitember

Timperature - The temperature was above the average from the Rocky Mountains to the western half of Lake Superior, also very locally in Quebec and New Brunswick: elsewhere in the Dominion the average was not, or only barelv, maintained. The
chief negative departures were $\%$ at Victoria, and 3° at Port Stanley and Ottawa, and the positive, 4° at Calgary and Minnedosa.

Pecipitation - A masked feature of the weather of the year up to the end of September has been the deficiency in precipitation in nearly all parts of the Dominion, and particularly so in Southern Alherta and Southwestern Saskatchewan, and in Northern Ontario eastward into Quebec. W'est of Regina and south of the Canadian Pacific Railway the conditions may be classed as pronounced dronght, while in Algoma, Nipissing and Maskoka, and greater part of the Ottawa Valley, the total registered rainfall was only abont 70 per cent. of the average of the previons seven years. The rainfall during September was above the average over British Collmbia and to a marked extent on the Lower Mainland. It was also well above the average in the Western Provinces, except from the Qu'Appelle Valley to Prince Albert, where there was quite a deficiency. There was also a marked deficiency throughont Ontario, Dueliee and the Maritime Provinces, except in the immediate vicisity of Ouelite City, where there was an excess of $1: 80$ inches. The chief positive departures were Vancouver, $2 \cdot 60$ inches: Battleford. 2.70 inches Portage la I'rairie, 2.60 incles ; and the pronounced negative ones were Southampton, $1: 0$ inches: 'Toronto, 1.41 inches: Varmonth, 1.50 inches : and sydney, 2.00 inches

Temperatures yor Algust and Smptrmber， 1914

	Augist		September		Sratos	August		September	
Station	宏	\％	要	閏		$\begin{aligned} & \overline{\hat{L}} \\ & \stackrel{\text { In }}{=} \end{aligned}$	（	$\frac{\pi}{6}$	5 3 3
Fution					Кіпшоиия	92		86	23
13．axoll	34	30	70	12	Kingstan	91	54	78	36
Rritish Columbtia					Laketield	88	47		
Atlin	65	33	55	28	Lomaton	95	$+2$	90	30
Agassiz	87	44	78	40	l．ucknow	96）	35	87	26
Burkerville	72	28	66	23	Hadue				
Kamloops	95	43	85	30	Mulland	90	45		
New Westminster	86	48	77	44	North diower	92	32	95	29
Prince Rupert	70	44	66	38	Otonatice				
Vatconver	79	47	69	45	Otawa	85	42	88	31
Victoria	82	46	71	44	Owen Sound				
H＇estern Prozumies					Paris ${ }^{\text {Parry }}$ Sumal	90	44	8	34 31
Batteford	90	35	so	30	Pectertary	92	$4)$	87	32
Broatuiew					Port Arihur	79	31	8 SO	34
Calgary	（x）	$3{ }^{0}$	\＄2	$3{ }^{3}$	Pont Burwell	83	52	78	3^{64}
Сатпии					Port Dower	93	47	87	34
Eatumetan	85	41	79	31	Piort stanley	84	46	79	33
Medicine Ilat	102	37	S9	35	Romsille	91	$3{ }^{36}$	8.4	2 S
Minnectusa	98	3^{2}	8.	28	Sarnia				
Moume law	94	30	87	30	Southamptow	S_{7}	41	S6	32
O．hhamk	89	35	85	31	Stonecliffe	$9+$	3^{6}	91	31
Portage lat Irairie	95	35	85	31	Stony Creek	90	44	s．）	35
Prince Alhert	82	35	76	$3{ }^{\circ}$	Strationd				
＇24＇ pppelle	88	32	87	29	Turomes	92	45	78	36
Kegillat	92	31	89	29	Ushrisige	94	39	86	30
Swilt Current	100	32	8.	28	Wallacelourg	๑ก	45	89	34
Wimupers	95	3	82	32	Welland	97	54	82	40
Un／atio					White River	86	22	81	＝0
Agincomet	94	45	ss	．is	（1）uelioc				
Aırera	91	3^{8}	$8 ;$	28	Brome	91	32	s_{3}	22
B．actal	90	35	S）	28	Father lowint	88	42	76	30
Barrie	03	43			Montreal	91	47	84	32
Bearrice	89	3^{6}	84	27	Yieloce	90	41	S；	27
Вітиаи	02	43	84	37	Sherlowote				
Blaomield	89	44	83	36	Writime Prorenes				
Bramtiord	97	42	89	32	Charluttetown	85	47	8＝	3^{6}
Rrace Miner					Chathan！	90	43	91	35
Chatham	94	46	91	3	D Thousie	82	43	89	35
Clinton	94	40	${ }^{8}$	32	Fredericton	85	39	90	$3^{\prime \prime}$
Coltam	94	45	90	32	If lifas	84	42	86	33
¢iravemhurst	95	35	87	26	Manctan	84	37	87	20
＇inelph	92	41	87	33	St．John	75	46	77	34
Haliburton	96	32	85	25	st．Stephen	82	35	40	24
Hamitun					Susses	8.	40	88	32
Hemtrville	So	31	87	28	Sydney	84	40	87	3^{6}
Kenora					Varmouth	73	4.	74	3^{6}

Deelination

\%en $16 \quad 18$

RECORD OF MAGNETIC DISTURBANCES ON SEPTEMBER 27,2
STATION OF

\qquad

Ventical Force

- 22
 2 $4 \quad 6$ \qquad 8 \qquad -22 $22 \quad 3 \quad 3$ 3nd $\quad 12$ 24 46 $6 \quad 8$ 810 10

Bifular -
\qquad $3 n \cdot d$ \qquad 4 \qquad 6 \qquad 8 \qquad 10 \qquad 2 - 2 - mud \qquad 2 \qquad 4 \qquad 8 \qquad 10

27, 28, 29, 1914, REGISTERED PHOTOGRAPHICALIY AT THE TORONTO (AGINCOLRT) : OF THE METEOROLOGICAL SERVICE

MAGNETIC OBSERVATIONS

During the months of August and September the magnetic traces indicate much more disturbance in the magnetic field than for some thme. The first and last weeks of August and the last week of September were particularly disturbed periods. The most pronounced feature of these magnetic storms, with the exception of that of September 27 and 28 , was their duration rather than their amplitude or rapidity of change of direction or force. In the storm of September 27 and 28 , however, both change of direction and force occurred rapidly and with great frequency, the commencement of disturbance in all three elements being at 14.55 o'clock on the 27 th, and being marked by rapid increase of both Horizontal and Vertical Fotce and decrease of Westerly Declination.

On the 16th of August an Ade Vertical Force Magnet for photographic registration of changes in the Vertical Component of the Earth's Magnetic Field was added to the equipment of the Agincourt Observatorv.

[^2]1914
Jug.
$\begin{array}{llllllllll}\text { Sept. } & 0.58732 & 0.58869 & 27 & 0.58546 & 28 & 0.60223 & 0.00223 & 0.00011\end{array}$

Inchmation	
Month	Mean Earth Inductur
1914	-
, ungust	74 411
september	74419

TORONTO

R F SIUPAKs. DIRECTOR
P. T. I'reliminary Tremors. L.W. Sarge Waves. . .C. = Air Currents. Time is Greenwich Civid Mean Time, o or $24 \mathrm{~h}=$ midnight.

Sis. on Felmary 7 th shonll read 1317 and fuly 210133%.

VICTORIA, B. C.
F. N. Denison, Superintendent.

No.	Date 1914		P.T. Comm.	1.W. Comm.	Max.	End	Sax. Amp.	Durat.	Remarks
			$h \mathrm{~m}$	h m	1 m			h m	
13:32	Aligrs.	4	$23+5$	$2316 \cdot 3$	$\begin{array}{lll} 23 & 31 \\ 3 & 35 \end{array}$	$120 \cdot 3$	$\begin{aligned} & 2 \% \\ & 57 \end{aligned}$	231%	L. W' well definerl.
13 S 3	\cdots	6	$+373$	- $433^{\circ} 4$		512 -7	O^{-7}	O $35 \cdot 4$	Phases doubtful.
1384	\cdots	8		$\begin{aligned} & 19 \quad 20 \cdot 2 \\ & 19=2 \cdot 3 \end{aligned}$	$1926 \cdot 1$	$1949^{\circ} 6$	I'3	-29.4	
1385	6	22		528.9	$\begin{array}{ll} 5 & 29.7 \\ 5 & 317 \end{array}$	$55^{1 / 3}$	$\begin{aligned} & \text { 1:3 } \\ & 2=0 \end{aligned}$	0224	
1385	A		$1523 \cdot 8$	$853{ }^{\prime \prime} 5$	15414	1621.8	$0 \cdot 5$	-59\%	
1387	64	24	7 12\%7			756.6		- $3^{\circ} 9$	
1388	*	28	$9 \quad 53$	915.6	$918 \cdot 6$	9463	0.4	0.410	
1389	*	28	$18 \quad 34$	186.8		$1826 \cdot 2$	$0 \cdot 2$	0 22.8	
t 390	sept.	2	$21 \div 5$	21140	$2115{ }^{\circ}$	2125.5	0.2	0.180	
1391	*	4	1745°	1755°	$1757^{\circ} 0$	188.0	$0 \cdot 1$	$023{ }^{\circ}$	
1302	6	10	106.2	?	1088.2 ?	$1015 \cdot 2$	0'15	- 9\%	
1393	*	: 1	1254 ?	12274	1230.4	1251.4	0.1	O $46^{\circ} 0$	
1.394	**	12	$16.27 \cdot 1$		$163)^{-1}$	1633.6	O. 15	O 6.5	
1395	*	13	17.459	1800.9	18033	18149	0.10	- 29\%	
1396	4	15	$015{ }^{1}$	$030 \cdot 6$	- $33^{\prime 1}$	$058 \cdot 1$	O. 2	- $36^{\circ} 0$	
1397	\cdots	25	$115{ }^{\circ}$?	118.4	118.9	1116.4	O'I	$011^{\circ} \mathrm{C}$	

astronomical notes

Stmins on Star Motions - Professor C. V. L. Charlier has published an essay in the Meddelanden of the Lund Observatory, in which he analyses the distribution of the proper motions in the "Preliminary General Catalogue" of Boss. He divides the sky into forty-eight squares, and finds the arrangement of proper motions, as regards direction and magnitude, in each of them. The combined result for the solar apex is :-

	R.A.	N. Dec.
Stars of 4 th mag. to 5 th mag. ...	$263^{\circ} \ldots$	35°
Stars of 5 th mag. to 6 th mag. .	$273^{\circ} \ldots$	81°

Assuming that the solar speed is twenty kilometres per second (after Campbell), he finds that the average parallax of the stars of magnitude five and a half is $0^{\prime \prime} \cdot 011$, and their mean distance twenty-nine and a half siriometers (a term he uses to denote a million astronomical units). Kapteyn had found $0^{*} \cdot 016$, but his result was based on less complete data.

He then examines the rival theories of "Two Star Streams " versus "The Ellipsoidal Distribution of Velocities" (Schwarzschild), and favors the latter one, showing that it implies that " the mean velocity in the direction of the vertex is about double that at right angles to this direction." He also discusses the theory of Professor Turner that the stars are moving in elongated elliptical orbits about a centre. He finds that he can explain on this theory a certain want of symmetry in the velocity distributions, which would arise in case the sun were near the centre of
motion, but not quite co-incident with it. He favors the theory without reaching a definite conclusion about it.

Professor Charlier reminds us that the small bodies of the solar system do not exhibit the equipartition of energy. However, their velocities are impressed on them by a single mighty massthe sun - and their case is not quite analogons to that of isolated stars that are only under the influence of the combined attraction of the stellar universe.

One noteworthy feature of this important essay is that though it emanates from Sweden, it is written in English - and very good English, considering that the author is a foreigner. This compliment to our language is paid also by several other numbers of the Lund Meddelanden.- A. C. D. Crommelin, in k'noatldge, No. 534.

The Late Sir David Gili.. - Outsiders who have seen him at work at these congresses may have been under the impression that it was the geniality of his person, his infections enthusiasm, and strong self-reliance which carried the day. But those who had followed matters closely would know how carefully he had studied every detail of the matter to be discussed, how long beforehand he had extensively corresponded with the most capable and most interested persons, and how he brought many of them together a few days before the date of the congress not only to arrange the programme for the proceedings, but also to discuss informally all the main points. All during the congress, too, he would bring the ablest men together for these informal discussions. In these, Gill would always play a prominent part ; sometimes his impetuosity would make it far from easy for those opposed to his views to explain their standpoint. It might be some time before Gill would really give attention to what they had to say, but that moment having come, they could wish for no better listener, and if they succeeded in showing that their point of view was more nearly correct, no man would be quicker to recognize his error than Gill. No man could be long with him without feeling that here was a man to whom the real
interest of science was paramonnt, a man who was always ready to sacrifice any pet plan of his own to the real interest of astronomy. A favorite expression of his, in giving up his opinion, would be: "The man who never makes a mistake is he who does nothing." I cannot help thinking that such personal qualities - his indomitable energy, his broad-mindedness, love of his work, kindness - his manliness in the best sense of the word, in short the charm of his strong personality, had almost as much to do with his achievements as his qualities as a scientist.

As a scientist Gill is best comparable in my opinion to F . G. W. Struve. 'The terms in which Argelander sums up his character-sketch of Struve in the I'icrteljahrscchifift der astronomischen Ciesellschaft $(1,52)$ are applicable almost word for word to Gill. And might not the following words be applied to Gill's Mistory of the Cape Obsevatory: "There is inspiration to be found in nearly every page of it, for its author had the true genius and spirit of the practical astronomer - the love of refined and precise methods of observation and the inventive and engineering capacity :" As a matter of fact they were written by Gill about Struse. Even in the particulars of their careers there is the greatest parallelism.

In the annals of astronomy, Gill's name will take place with those of Bradley. Bessel and Struve. In many a human heart his image will last as long as life itself. - J. C. KAptevs, in Astrophysical Journal for September.

Harvard Coldege Observatorv.- Bulletin, No. 567. A telegram received at this Observatory from Professor A. O. Leuschner, of Berkeley, California, gives the following elements of Campbell's Comet, computed by Miss I.evy and Shane from observations on September 26, 27 and 29 :-

ELEMENTS

Bulletin No. 56s - A telegram received at this Observatory fro:n Professor A. O. Leuschner, of Berkeley, Califormia, gives the following ephemeris of Campletl's Comet, computed by Mirs Levy and Shane from observations on September 2\%. Octoher s and 14 .

EPHEMER1S

1;.M.T.		R.A.			Hec.			1.ight
		${ }_{\text {h }}$	\ldots	\pm		-	-	
1014. Extwher	24.5	21	47	25	\%	1	(t)	(1) 23
	$28 \cdot 5$	21	$4)$	os		2	51	
Sovember	$1 \cdot 5$	21	45	48		4	1.$)$	
	$5 \cdot 5$	21	46	10		5	34	O.OM,
EDWARIC. PICkERIN(i. Divetos.								

Ramiation from Stars.-In Prblications of the Astronomical Society of the Pacific, No. 155, W. W. Cobrentz, of the Lick Observatory, describes a new instrmment termed a thermoelement which he says is perhaps a hundred times as sensitive as some of the radiometers used in previous attempts at the measurement of stellar radiation. With it quantitative measurements were made on stars down to the fifth magnitude and highly qualitative measurements were made on stars down to the seventh magnitude.

The instruments were used in conjunction with the Crossley Reflector at the Observatory

The radiation from over one hundred celestial objects has been measured. No measurements were attempted on stars of less than the seventh magnitude, owing to the difficulty (lack of illumination) in projecting the star-image centrally upon the receiver. Furthermore, it was not apparent that much would be achieved in this preliminary work by so doing. The bumidity during the summer nights on Mt. Hamilton falls below 10 per cent. and any slight variations in humidity lave a marked effect upon the radiometric measurements, especially upon red stars, which have the property of emitting a great amount of infra-red radiation.

The total radiation received from a star is a function of its
size, distance, temperature, and especially of its emissivity. The latter is a function of the kind and the plysical condition of the material which forms the radiating layer of the stellar surface. To eliminate the effect of the size and the distance of a star upon the quality of the radiations received, measurements were made in which the stellar rays were passed through a layer of water 1 cm in thickness. The water absorbs all the infra-red rays of wave-lengths greater than 14μ, and gives a rough comparison of the distribution of energy in the spectrum. The ratio of the galvanometer deflection caused by the stellar rays falling upon the thermo-element after passing tinrough the water (i. e. those rays which are transmitted by the cell of water) to the deflection caused by all the stellar rays collected by the mirror and concentrated upon the thermoelement, gives the "transmission." If the total radiation from a red star contains more infra-red rays than does the total radiation from a blue star, then the amount transmitted by the water cell will be less for the red than for the blue star.

From 50 to 60 per cent. of the light reflected from Venus, Saturn and Jupiter is transmitted by the water-cell. On the other hand, only 14 to 15 per cent. of the light of the Moon was transmitted by the water cell. The explanation given is that the lunar surface becomes quite warm from exposure to the sun and in turn radiates heat waves, which are not transmitted by the absorption cell. The albedo of the moon being much less than that of the planets, it should become heated to a higher temperature and the transmission through the absorption cell should be the least, as ohserved.

The detailed data, which has been accummlated, will be published elsewhere as soon as possible.

A contribution to Popular Astronomy, No. 9., by Bernard Thomas, on "The Nearness of the Stars," concludes:- The considerations mentioned afford grounds for a belief that the universe of visible stars is smaller and more contracted than so often stated. Until we have more evidence to the contrary, we
can assume that the extreme distance of the stars and nebule is not more, and probably less, than five hundred light years. That the less luminous stars far outnumber the brighter ones and are not at greater distance. That the sun is a star of more than average size and luminosity, although there are some which are giants in size and others with a brighter intrinsic surface. That the galaxy is within this belt, a cluster of clusters of small suns with slow motions and with larger suns amongst them.

The Annial Report of the British Astronomical Association for the year ending September 30th, 1914, shows the Association to be in a flourishing condition with thirteen observing sections. At the begiming of the year, the total membership was 972 ; during the year there have been elected 59 new members; resigned 2.3 : deceased 18 ; excluded 24 ; leaving a total membership of 966 . The bulk of these reside in England, whilst a number are distributed throughout Wales, Scotland, Iseland, Eiturope, North and South America, India, Japan, Australia and Africa.

Lord Rosse's 'rarisscope- It is stated that the great 6 -foot reflector at Birr Castle, Parsonstown, has been handed over to the Science Musemm at South Kensington. So the active career of the mammoth telescope, which caused so much wonderment among men 70 years ago, has terminated in its becoming a museum curiosity ! For years its practical utility had ceased. Its work had been accomplished. The great telescopes constructed in recent years had virtually rendered it obsolete.

Possibly it never quite fulfilled the bopes it encouraged, nor fully recompensed the ability and zeal of the man who conceived the idea of its construction and made it a reality: but it performed many important services, if it failed to reveal the satellites of Mars or the fifth satellite of Jupiter. The telescope earned for itself a most interesting history, and it will live in the story of astronomical progress.

Its powers were chiefly directed to the observation and dis-
covery of nebula, and it was the first to reveal the spiral character of some of these objects. It was supposed that its great penetrating power had resolved the nebula, properly so called, into stars, but the spectroscope of Huggins showed this to be a misconception. The results obtained with the instrument were published in the Trans. of the Roval Dublin Society in 1879, and were entitled "Observations of Nebulæe and Clusters of Stars, made with the 6 -foot and 3 -foot Reflectors from 1848 to 1878 ." This valuable paper included 179 pages, many diagrams, and 6 plates. Other important contributions had been published from time to time. A series of valuable observations and drawings of Jupiter and his red spot were given in the .Ifonth/ly Notires for 1873-4, xxxiv., p. 235.

The "passing" of the great Rosse telescope must give rise to a feeling of regret. But it will ever form an historical monument to the genins of the nobleman who designed and perfected its construction. It gave thrills to astronomical enthusiasts, and its possibilities aroused the interested attention of the public. The valuable work it performed justified its erection if it €ailed, like Herschel's 4 -foot, in contributing many sensational items to astronomical progress.-W. F. Devxing, in The Obserialory, No. 47 s .

The Austrabian Meleting of the Britisi Assoclation. - The opening address to the Section of Mathematics and Physics was delivered by Professor F. T. Trouton, M.A., Sc.D., F. R.S., President of the Section. After referring sympathetically to the loss which science has suffered by the death of Sir Robert Ball, Professor Poynting, Sir David Gill and Mr. Sutherland, he congratulated the Universities of Australia and New Zealand on the large number of their past students who have enriched science by research, especially in subjects connected with radio-activity. The work of Rutherford and others had shown that the stores of energy in the atom were unlocked, and it became a question whether the energy involved in our motion through the luminiferous ether could not be tapped, "despite the ingenious theories of relativity which have been put forward to explain matters away." The readiness with which the doctrine of " Relativity " had been accepted was an exaggerated example of the catholicity of pres-ent-day science.-In Knowlodge, No. 555.
J. R. C.

NOTES AND QUERIES

Communications are Invited. Especially from Amatuers. The Editor will try to Secure Answers to Queries.

Quenv

At the spring equinox, which occurs on March 2?, the suln is on the equator ami, therefore, the day and the night are of equal lengllo. However, of referring to the newspapers at that time or to our II ixismonk, page 12, Ifind that in latitude 44° the sill rises at 6.0 and sets at 6.13 . giving 12 h 12 m of day and $14^{h} 48 \mathrm{~m}$ of night; or the day is 24 m longer than the might. How is this? - I. C., (Toronto.)

ANsw:r

An explanation of this discrepancy is to be found in the first paragraph of page 9 of the HANDBOOK, where it is stated that the times given in the tables are for the rising and the setting of the upper limb, corrected for refraction. If the sun were a luminous point, without any apparent diancter, and the earth were devoid of atmospliere, then at a place liaving a sea horizon the day and the night at the equinox would be equal. Of the difference between their lengths, abont one-third is due to the sun's size, the rest to refraction by the atmosphere. For a fuller explanation of sefraction refer to a text-book on astronomy.

OBSERVATIONS IN BERMUDA

From Colonel W. R. Winter, of Bermuda, the Iiditor has received an interesting letter, dated October 14, from which he takes the liberty of quoting.
"'The weather here for six weeks has been against observations. I believe I had a glimpse of Delavan's Comet at the end
of September througls the clouds. It appeared like this. (Sketch added showing its appearance and position near the "Big Dipper'). Short tail, with well-rounded nucleus and envelope.

There las been little to note this year. The last week in June was remarkable for a fine display of large meteors - sonsetimes two or three a night, and they were heard in the daytime. The radiant point was in the neighborhood of Aquila and direction generally westward. The largest observed was on 26 th June at $7.20 \mathrm{p} . \mathrm{m}$. Its course was as under (see figure) and had

PATII OF T.ARGE METEOR SEEN IN BERMUDA
JUNE 20, 1914.
it been dark it would have been a splendid sight. The sound of the explosion, which was very loud, reached us in 8.05 minutes (about donble the average). It burst into a fine bunch of red, yellow and greenish pieces, which travelled on and gave out sparks for about two or three seconds.

At 5.23 p.m., 23 rd September, a fine circular rainbow-halo was observed round the sun. The inner circle, rainbow coloured, had a diameter of about 40°, the outer circle was a pearly gray halo about 60° in diameter. This was followed by a very heavy dew."

ANOTHER ADDITION TO JUPITER'S FAMII,

The first-fruit of the invention of the telescope was the discovery by Galileo in 1610 of the first four satellites of Jupiter. bodies which ever since have excited the keen interest both of the professional and the amateur astronomer. The fifth satellite was not revealed until 1892, nearly three centuries later, when Barnard detected it with the then recently installed I ick refractor. In the winter of 190405 , by means of photographs taken with the Crossley reflector, of the same observatory, Perrine discovered satellites numbered six and seven. These three bodies are all very small, the stellar magnitudes being approximately $13,14,16$, respectively. Then in 1908, Melotte, of Greenwich, by photography discovered an eighth satellite, of about the 17 th magnitude ; and now the Lick Observatory has again distinguished itself by adding a ninth member to the family.

An account of the discovery is given in the Publications of the A. S. P., and in Popular Astonomy by Mr. Seth B. Nicholson. On July 21, while volunteer assistant at the I, ick Observatory, Mr. Nicholson photographed the eighth satellite with the Crossley reflector, and on the following night a second plate was secured. On comparing the two plates a new image was found slightly east and south of the eighth satellite. From the distinctness of the images on the plates, which had received an exposure of two hours, the new body was judged to be of nearly the nineteenth magnitude, that is, a magnitude or more fainter than number eight. On July 23 and 24 it was again photographed, and then Acting Director Tucker made telegraphic announcement of the discovery of the unidentified object. The body was followed further during July and August until sufficient observations had been secured to prove that it was a new satellite. Its motion is retrograde and its period about three years, and hence its mean distance is about $18,900,000$ miles.

It is worth noticing that satellite number eight, which has a mean distance of about $15,600,000$ miles, as also the ninth satellite of Saturn, which has a mean distance of about $8,000,000$ miles, all move retrograde. Of all the satellites in the solar
system these revolve at the greatest distance from their primaries, which fact must have some significance in the theories of evolution of the system.

As the precise date of an astronomical discovery is always of interest I may be pardoned for quoting from an old letter which I received from Professor Perrine, to whom I had written regarding the sixth and seventh satelites. The letter is dated February 13,1907 , and I take the liberty of quoting the following paragraph : -
" As to the dates of discovery I am not quite certain in both cases. I think I detected VI. on either December 9 or 10,1904 ; VII. I found on January 5, 1905. These dates are the dates on which I detected the images. Their character was not made certain until the dates of announcement,"

DELAVAN'S COMET

This comet has been well observed by amateurs during September and October as it has been easily visible to the naked eye. It was discovered by P. T. Delavan, of the La Plata Observatory, Argentine Republic, on December 17, 1913, while searching with the eight-inch Zeiss comet-seeker of that institution. It was very faint, scarcely brighter than the eleventh magnitude. The elements of the orbit, computed from observations on December 17 and 30, 1913, and January 8, 1914, gave October 30,1914 , as the time of passing perihelion, but later computations gave October 26 as the date. Very seldom has a comet been discovered so long before peribelion passage.

We had hoped to reproduce in the present number of the Journai, a photograph of the comet taken by Mr. Motherwell, of the Dominion Observatory, with the photographic outfit described on page 305 ; but in the evening the view of the comet was obstructed by the main building of the Observatory and in the morning the city lights so illuminated the sky where it was that satisfactory negatives could not be obtained.
C. A. C.

[^0]: *"The Solar Rotation in tgtt, " I. S. Plasketl and R. E. DeLury, Altro pliysial Journal. Vol. XXXVII., Nu. 2.

[^1]: *See the two papers by I. S. Hlashett and R. F.. Del.ury abrady referted

[^2]: Vertical Force,-C.f;s. Inns.

